SOLUTION: Given: x = 2/(10 - t) & y = (2t + 1), eliminate the parameter. A.) {{{ y = 20 - 2/x }}} B.) {{{ y = 21 - 2/x }}} C.) {{{ y = 20 - 4/x }}} D.) {{{ y = 21 - 4/x }}}

Algebra ->  Test -> SOLUTION: Given: x = 2/(10 - t) & y = (2t + 1), eliminate the parameter. A.) {{{ y = 20 - 2/x }}} B.) {{{ y = 21 - 2/x }}} C.) {{{ y = 20 - 4/x }}} D.) {{{ y = 21 - 4/x }}}      Log On


   



Question 1079503: Given: x = 2/(10 - t) & y = (2t + 1), eliminate the parameter.
A.) +y+=+20+-+2%2Fx+
B.) +y+=+21+-+2%2Fx+
C.) +y+=+20+-+4%2Fx+
D.) +y+=+21+-+4%2Fx+

Answer by MathLover1(20849) About Me  (Show Source):
You can put this solution on YOUR website!


A parametric equation in a plane consists of two equations
x+=+f%28t%29 and y+=+g%28+t+%29 where x+and y are ordered pairs and t is the parameter.
Given:
x+=+2%2F%2810+-+t%29
+y+=+%282t+%2B+1%29, eliminate the parameter.
First solve the equation x+=2%2F%2810+-+t%29 for the parameter, t:
x%2810+-+t%29++=2
10x+-x%2A+t++=2
10x+-2+=x%2A+t

10x%2Fx+-2%2Fx+=+t+
t=10+-2%2Fx

Then substitute the expression into the other parametric equation for t:
+y+=+%282t+%2B+1%29
y+=+2%2810+-2%2Fx%29%2B+1
+y+=+20+-4%2Fx%2B+1
+y+=+21+-4%2Fx
so, your answer is: D.) +y+=+21+-+4%2Fx+