SOLUTION: if log base b (2)=x and log base b (3)=y, evaluate the following terms of x and y: log base b (24)= log base b (216)= log base b (16/27)= (log base b (27))/(log base b

Algebra ->  Logarithm Solvers, Trainers and Word Problems -> SOLUTION: if log base b (2)=x and log base b (3)=y, evaluate the following terms of x and y: log base b (24)= log base b (216)= log base b (16/27)= (log base b (27))/(log base b       Log On


   



Question 617405: if log base b (2)=x and log base b (3)=y, evaluate the following terms of x and y:
log base b (24)=
log base b (216)=
log base b (16/27)=
(log base b (27))/(log base b (4))=

Found 2 solutions by stanbon, MathTherapy:
Answer by stanbon(75887) About Me  (Show Source):
You can put this solution on YOUR website!
if log base b (2)=x and log base b (3)=y, evaluate the following terms of x and y:
log base b (24)= logb(8*3) = logb(8) + logb(3) = 3log(2)+logb(3 = 3x+y
---------------------------------------------------
log base b (216) = logb(6^3) = logb(3^3*2^3) = logb(3^3)+logb(2^3
= 3log(3) + 3log(2)
= 3y + 3x
---------------------------------------
log base b (16/27)= logb(2^4)-logb(3^3) = 4logb(2)-3logb(3) = 4x-3y
------------------------------------
(log base b (27))/(log base b (4))= logb(3^3)/logb(2^2) = 3log(3)/2log(2)
-------
= 3y/2x
=============
Cheers,
Stan H.
==================

Answer by MathTherapy(10699) About Me  (Show Source):
You can put this solution on YOUR website!
if log base b (2)=x and log base b (3)=y, evaluate the following terms of x and y:

log base b (24)=

log base b (216)=

log base b (16/27)=

(log base b (27))/(log base b (4))=
===================================
log+%28b%2C+%282%29%29+=+x      log+%28b%2C+%283%29%29+=+y

          log base b (24)=             log base b (216)=           log base b (16/27)=   (log base b (27))/(log base b (4))=