SOLUTION: Verify that equation is identity . sinθ+cosθ=(2sin^2θ - 1)/(sinθ-cosθ)
Algebra
->
Logarithm Solvers, Trainers and Word Problems
-> SOLUTION: Verify that equation is identity . sinθ+cosθ=(2sin^2θ - 1)/(sinθ-cosθ)
Log On
Algebra: Logarithm
Section
Solvers
Solvers
Lessons
Lessons
Answers archive
Answers
Click here to see ALL problems on logarithm
Question 506868
:
Verify that equation is identity .
sinθ+cosθ=(2sin^2θ - 1)/(sinθ-cosθ)
Answer by
jim_thompson5910(35256)
(
Show Source
):
You can
put this solution on YOUR website!
sin(x)+cos(x)=(2sin^2(x) - 1)/(sin(x)-cos(x))
sin(x)+cos(x)=(2sin^2(x) - 1)/(sin(x)-cos(x))*((sin(x)+cos(x))/(sin(x)+cos(x)))
sin(x)+cos(x)=((2sin^2(x) - 1)*(sin(x)+cos(x)))/((sin(x)-cos(x))*(sin(x)+cos(x)))
sin(x)+cos(x)=((2sin^2(x) - 1)(sin(x)+cos(x)))/(sin^2(x)-cos^2(x))
sin(x)+cos(x)=(-cos(2x))(sin(x)+cos(x)))/(sin^2(x)-cos^2(x))
sin(x)+cos(x)=(-cos(2x))(sin(x)+cos(x)))/(-cos(2x))
sin(x)+cos(x)=sin(x)+cos(x)
So this verifies the identity