SOLUTION: 9. Represent the following integer numbers a) 88 b) -123 i) using 8-bit register using sign modulus ii) using 8-bit register using one’s complement iii) using 8-bit register

Algebra ->  Logarithm Solvers, Trainers and Word Problems -> SOLUTION: 9. Represent the following integer numbers a) 88 b) -123 i) using 8-bit register using sign modulus ii) using 8-bit register using one’s complement iii) using 8-bit register       Log On


   



Question 1189072: 9. Represent the following integer numbers
a) 88 b) -123
i) using 8-bit register using sign modulus
ii) using 8-bit register using one’s complement
iii) using 8-bit register using two’s complement.
10. What is the number represented by
(i) 10011 (ii) 01010 (iii) 11011
if the representation is
a) sign-modulus b) one’s complement c) two’s complement
11. Use 8-bit registers to perform the following calculations
(i) 24 + 68 (ii) 5 - 19 (iii) -13 - 7
using the following representations
a) sign-modulus b) one’s complement c) two’s complement
12. Represent the following in normalised binary exponential form using 8 bits mantissa and
5 bits exponent.
a) - 13.375 b) 0.1875 c) 810.7 d) -32.30 e) 5.045
13. Perform the following floating-point addition using 8-bit mantissa and 5-bit exponent in
binary exponential form:-
a) 4.5 + 5.0 b) -12.25 - 10.5 c) 25 - 14.0
d) 0.5 + 0.375 e) 0.2 + 0.0625 f) 0.9375 - 11.25

Answer by Solver92311(821) About Me  (Show Source):
You can put this solution on YOUR website!

9.b).(iii)
Two's Complement, negative number. Represent the absolute value, then flip all bits, then add 1:

-123

Absolute value representation:

123 = 1 X 64 + 1 X 32 + 1 X 16 + 1 X 8 + 0 X 4 + 1 X 2 + 1 X 1, so

        0 1 1 1 1 0 1 1


Flip all bits:

        1 0 0 0 0 1 0 0

Then add 1

        1 0 0 0 0 1 0 1


Check: Absolute value representation plus negative number representation should sum to zero (discard final carry)

        1 0 0 0 0 1 0 1
      + 0 1 1 1 1 0 1 1
       ----------------
        0 0 0 0 0 0 0 0       


John

My calculator said it, I believe it, that settles it

From
I > Ø