.
Start from this basic identity
cos(3a)=4*cos^3(a) - 3*cos(a).
Then 2*cos(3a) = 8*cos^3(a) - 6*cos(a), and we are given that
8*cos^3(a) - 6*cos(a) = cos(a).
It implies
= 0.
So, either cos(a) = 0 or
= 0; the last is equivalent to
=
.
Case 1. If cos(a) = 0, then cos(2a) =
= -1.
Case 2. If
=
, then cos(2a) =
=
=
=
=
.
Answer. If 2*cos(3a) = cos(a), then EITHER cos(2a) = -1 OR cos(2a) =
.
Solved.