SOLUTION: Solve this equation by completing the square. 3x^2 - 4x = -2

Algebra ->  Equations -> SOLUTION: Solve this equation by completing the square. 3x^2 - 4x = -2      Log On


   



Question 980552: Solve this equation by completing the square.
3x^2 - 4x = -2

Answer by richwmiller(17219) About Me  (Show Source):
You can put this solution on YOUR website!
Solved by pluggable solver: COMPLETING THE SQUARE solver for quadratics
Read this lesson on completing the square by prince_abubu, if you do not know how to complete the square.
Let's convert 3x%5E2%2B-4x%2B2=0 to standard form by dividing both sides by 3:
We have: 1x%5E2%2B-1.33333333333333x%2B0.666666666666667=0. What we want to do now is to change this equation to a complete square %28x%2Bsomenumber%29%5E2+%2B+othernumber. How can we find out values of somenumber and othernumber that would make it work?
Look at %28x%2Bsomenumber%29%5E2: %28x%2Bsomenumber%29%5E2+=+x%5E2%2B2%2Asomenumber%2Ax+%2B+somenumber%5E2. Since the coefficient in our equation 1x%5E2%2Bhighlight_red%28+-1.33333333333333%29+%2A+x%2B0.666666666666667=0 that goes in front of x is -1.33333333333333, we know that -1.33333333333333=2*somenumber, or somenumber+=+-1.33333333333333%2F2. So, we know that our equation can be rewritten as %28x%2B-1.33333333333333%2F2%29%5E2+%2B+othernumber, and we do not yet know the other number.
We are almost there. Finding the other number is simply a matter of not making too many mistakes. We need to find 'other number' such that %28x%2B-1.33333333333333%2F2%29%5E2+%2B+othernumber is equivalent to our original equation 1x%5E2%2B-1.33333333333333x%2Bhighlight_green%28+0.666666666666667+%29=0.


The highlighted red part must be equal to 0.666666666666667 (highlighted green part).

-1.33333333333333%5E2%2F4+%2B+othernumber+=+0.666666666666667, or othernumber+=+0.666666666666667--1.33333333333333%5E2%2F4+=+0.222222222222222.
So, the equation converts to %28x%2B-1.33333333333333%2F2%29%5E2+%2B+0.222222222222222+=+0, or %28x%2B-1.33333333333333%2F2%29%5E2+=+-0.222222222222222.

Our equation converted to a square %28x%2B-1.33333333333333%2F2%29%5E2, equated to a number (-0.222222222222222).

There is no number whose square can be negative. So, there is no solution to this equation

Solved by pluggable solver: SOLVE quadratic equation with variable
Quadratic equation ax%5E2%2Bbx%2Bc=0 (in our case 3x%5E2%2B-4x%2B2+=+0) has the following solutons:

x%5B12%5D+=+%28b%2B-sqrt%28+b%5E2-4ac+%29%29%2F2%5Ca

For these solutions to exist, the discriminant b%5E2-4ac should not be a negative number.

First, we need to compute the discriminant b%5E2-4ac: b%5E2-4ac=%28-4%29%5E2-4%2A3%2A2=-8.

The discriminant -8 is less than zero. That means that there are no solutions among real numbers.

If you are a student of advanced school algebra and are aware about imaginary numbers, read on.


In the field of imaginary numbers, the square root of -8 is + or - sqrt%28+8%29+=+2.82842712474619.

The solution is

Here's your graph:
graph%28+500%2C+500%2C+-10%2C+10%2C+-20%2C+20%2C+3%2Ax%5E2%2B-4%2Ax%2B2+%29