Question 856038: One integer is 10 less than 3 times another. The sum of their squares is 100. What are the two integers? Found 2 solutions by hamsanash1981@gmail.com, ramkikk66:Answer by hamsanash1981@gmail.com(151) (Show Source):
You can put this solution on YOUR website! Let one of the integer be x then, another number = 3x-10
x^2 + (3x - 10)^2 = 100
x^2 + 9x^2 +100 - 60x = 100
10x^2 -60x = 0
10x^2 = 60 x
10 x = 60
x = 6
the other number is 3*6-10 => 8
The two integers are 6, 8
Let one integer be x. Then the other is 3*x - 10
Sum of squares =
i.e.
Simplifying
So, or
If x = 0, the other number = 3*0 - 10 = -10
If x = 6, the other number = 3*6 - 10 = 8
So the solutions are (0,-10) or (6,8)
Hope this clarifies :)