SOLUTION: Write the equation of the line that passes through (2, 2) and (6, 3) in standard form.

Algebra ->  Equations -> SOLUTION: Write the equation of the line that passes through (2, 2) and (6, 3) in standard form.      Log On


   



Question 653397: Write the equation of the line that passes through (2, 2) and (6, 3) in standard form.
Answer by VirtualMathTutor(26) About Me  (Show Source):
You can put this solution on YOUR website!
To find the equation of the line passing through the point (2, 2) and (6, 3), start by finding the slope using the slope formula:
%28y2+-+y1%29%2F%28x2+-+x1%29
Label the points given:
x1 = 2
y1 = 2
x2 = 6
y2 = 3
Substitute these values into the formula:
m=%283+-+2%29%2F%286+-+2%29
Simplify
1%2F4
Now that we have the slope m = 1%2F4, we will use the formula
y - y1 = m(x - x1)
y - 2 = 1%2F4(x - 2)
Multiply both sides by 4 to get rid of the fraction:
4(y - 2) = x - 2
Simplify
4y - 8 = x - 2
Add 8 to both sides:
4y = x - 2 + 8
Subtract x from both sides:
4y - x = -2 + 8
Simplify
4y - x = 6