SOLUTION: {{{ sqrt(3x^2+5x+8) - sqrt(3x^2+5x+1)= 1 }}} x1, x2 = ?

Algebra ->  Equations -> SOLUTION: {{{ sqrt(3x^2+5x+8) - sqrt(3x^2+5x+1)= 1 }}} x1, x2 = ?      Log On


   



Question 644903: +sqrt%283x%5E2%2B5x%2B8%29+-+sqrt%283x%5E2%2B5x%2B1%29=+1+
x1, x2 = ?

Answer by sachi(548) About Me  (Show Source):
You can put this solution on YOUR website!
sqrt(3x^2+5x+8) - sqrt(3x^2+5x+1)= 1
or sqrt(3x^2+5x+8)=1+ sqrt(3x^2+5x+1)
squaring both sides
3x^2+5x+8=3x^2+5x+1+1 +2 sqrt(3x^2+5x+1)
or 8-2=2 sqrt(3x^2+5x+1)
or sqrt(3x^2+5x+1)=6/2=3
again squaring both sides
3x^2+5x+1=9
or 3x^2+5x+-8=0
or 3x^2-3x+8x-8=0
or 3x(x-1)+8(x-1)=(x-1)(3x+8)=0
or x=1 or -8/3
ans