SOLUTION: If a^2 - am + bm + b^2 , what is m in terms of a and b? A) b - a B) a - b C) a + b D) (a^2 + b^2)/(a - b) E) (a^2 + b^2)/(a + b) Thanks!

Algebra ->  Equations -> SOLUTION: If a^2 - am + bm + b^2 , what is m in terms of a and b? A) b - a B) a - b C) a + b D) (a^2 + b^2)/(a - b) E) (a^2 + b^2)/(a + b) Thanks!      Log On


   



Question 469824: If a^2 - am + bm + b^2 , what is m in terms of a and b?
A) b - a
B) a - b
C) a + b
D) (a^2 + b^2)/(a - b)
E) (a^2 + b^2)/(a + b)

Thanks!

Answer by sofiyac(983) About Me  (Show Source):
You can put this solution on YOUR website!
I'm assuming a%5E2+-+am+%2B+bm+%2B+b%5E2 equals zero? otherwise we can't solve for m
a%5E2+-+am+%2B+bm+%2B+b%5E2=0
+m%28b-a%29=-a%5E2-b%5E2
+m%28b-a%29=%28-a%5E2-b%5E2%29%2F%28b-a%29
+m+=-%28a%5E2%2Bb%5E2%29%2F%28-%28a-b%29%29
+m+=%28a%5E2%2Bb%5E2%29%2F%28a-b%29
so the answer is D