SOLUTION: 'A man wanted to get into his work building, but he had forgotten his code.
However, he did remember five clues. These are what those clues
were:
The fifth number plus the thi
Algebra ->
Equations
-> SOLUTION: 'A man wanted to get into his work building, but he had forgotten his code.
However, he did remember five clues. These are what those clues
were:
The fifth number plus the thi
Log On
Question 151039: 'A man wanted to get into his work building, but he had forgotten his code.
However, he did remember five clues. These are what those clues
were:
The fifth number plus the third number equals fourteen.
The fourth number is one more than the second number.
The first number is one less than twice the second number.
The second number plus the third number equals ten.
You can put this solution on YOUR website! Let the code be ABCDE.
1.
2.
3.
4.
5.
Let's see if we can get each number in terms of B.
From 3,
From 4,
From 2,
From 1 and 4,
Now substitute all of these into 5 and solve for B.
5.
Now go back and find A,C,D,and E.
His number was 74658.
.
.
.
The question to ask is how could he remember these find intricate codes but not 5 numbers.