SOLUTION: Let f(x) = -x^3 + 3x^2 - 3x + 1, and g(x) be f(x) divided by 1 - x; solve for
g(x) if 1 -x is a factor or f(x).
a. g(x) = x^4 - 4x^3 + 6x^2 - 4x + 1
b. g(x) = x^3 - 3x^2 +
Algebra ->
Equations
-> SOLUTION: Let f(x) = -x^3 + 3x^2 - 3x + 1, and g(x) be f(x) divided by 1 - x; solve for
g(x) if 1 -x is a factor or f(x).
a. g(x) = x^4 - 4x^3 + 6x^2 - 4x + 1
b. g(x) = x^3 - 3x^2 +
Log On
Question 143708: Let f(x) = -x^3 + 3x^2 - 3x + 1, and g(x) be f(x) divided by 1 - x; solve for
g(x) if 1 -x is a factor or f(x).
a. g(x) = x^4 - 4x^3 + 6x^2 - 4x + 1
b. g(x) = x^3 - 3x^2 + 3x -1
c. g(x) = -x^2 + 2x - 1
d. g(x) = x^2 - 2x + 1 Answer by Edwin McCravy(20054) (Show Source):
You can put this solution on YOUR website! Let f(x) = -x^3 + 3x^2 - 3x + 1, and g(x) be f(x) divided by 1 - x; solve for
g(x) if 1 -x is a factor or f(x).
a. g(x) = x^4 - 4x^3 + 6x^2 - 4x + 1
b. g(x) = x^3 - 3x^2 + 3x -1
c. g(x) = -x^2 + 2x - 1
d. g(x) = x^2 - 2x + 1
Write 1 - x as -x + 1 and divide by
long division to find g(x):
x² - 2x + 1
-------------------
-x + 1)-x³ + 3x² - 3x + 1
-x³ + x²
---------
2x² - 3x
2x² - 2x
--------
-x + 1
-x + 1
------
0
So g(x) = x² - 2x + 1, which is
choice d.
Edwin