SOLUTION: Factor a) a^4 +a^2b^2 +b^4 b) a^4 +4b^4

Algebra ->  Equations -> SOLUTION: Factor a) a^4 +a^2b^2 +b^4 b) a^4 +4b^4      Log On


   



Question 1139340: Factor
a) a^4 +a^2b^2 +b^4
b) a^4 +4b^4

Answer by ikleyn(52776) About Me  (Show Source):
You can put this solution on YOUR website!
.

a)  a^4 +a^2b^2 +b^4 = 


           add and subtract  a^2*b^2


    = (a^4 + 2a^2*b^2 + b^4) - a^2*b^2  = %28a%5E2+%2B+b%5E2%29%5E2 - %28ab%29%5E2 = 


          apply the formula  x%5E2 - y%5E2 = (x+y)*(x-y)


    = %28a%5E2+%2B+ab+%2B+b%5E2%29%2A%28a%5E2+-+ab+%2B+b%5E2%29.     ANSWER


Done; i.e. factored.


b)  a^4 + 4b^4 = a^4 + (2b^2)^2 = 


           add and subtract  2*a^2*(2b^2)


    = (a^4 + 2*a^2*(2b^2) + 4b^4) - 2*a^2*(2b^2) = 


    = (a^2 + 2b^2)^2 - 4*a^2*b^2 = 


    = (a^2 + 2b^2)^2 - (2ab)^2 = 


          apply the formula  x%5E2 - y%5E2 = (x+y)*(x-y)


   = (a^2 - 2ab + 2b^2)*(a^2 + 2ab + 2b^2).


Done; i.e. factored.


------------------------

See the lesson
    - Advanced factoring
in this site.