.
2tan(x)sin(x)+2sin(x)=tan(x)+1. x is has to be from 0 to 360 inclusive.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
2tan(x)sin(x)+2sin(x)=tan(x)+1.
Collect everything in the left side
2tan(x)sin(x) - tan(x) + 2sin(x) - 1 = 0.
Group the terms
(2tan(x)sin(x) - tan(x)) + (2sin(x) - 1) = 0.
Factor
tan(x)*(2sin(x)-1) + (2sin(x)-1) = 0,
(tan(x)+1)*(2sin(x)-1) = 0.
Consider two cases.
Case 1. tan(x) +1 = 0 ---> tan(x) = -1 ---> x = 135° or x = 315°.
Case 2. 2sin(x)-1 = 0 ---> sin(x) = 1/2 ---> x = 30° or x = 150°.
ANSWER. The solutions are 30°, 135°, 150°, 315°.
Solved.