z = cos(x) + i*sin(x) ====> = = de Moivre = cos(4x) + i*sin(4x) ====> cos^4(x) + 4*i*cos^3(x)*sin(x) + 6*i^2*cos^2(x)*sin^2(x) + 4*i^3*cos(x)*sin^3(x) + i^4*sin^4(x) = cos(4x) + i*sin(4x) , or, equivalently cos^4(x) + 4*i*cos^3(x)*sin(x) - 6*cos^2(x)*sin^2(x) - 4*i*cos(x)*sin^3(x) + sin^4(x) = cos(4x) + i*sin(4x), which implies cos(4x) = which is an identity you are looking for. So, A = 1, B = -6, C = 1.