This Lesson (Calculating the sum 1*sin(1°) + 2*sin(2°) + 3*sin(3°) + . . . + 180*sin(180°)) was created by by ikleyn(52752): View Source, Show About ikleyn:
Calculating the sum 1*sin(1°) + 2*sin(2°) + 3*sin(3°) + . . . + 180*sin(180°)
The problem below is above the average school Math level.
It is a typical Math Circle level problem.
Problem 1
Find the sum of 1*sin(1°) + 2*sin(2°) + 3*sin(3°) + . . . + 180*sin(180°).
Solution
Let R = 1*sin(1°) + 2*sin(2°) + 3*sin(3°) + . . . + 180*sin(180°).
It is even more convenient for me to write
R = 0*sin(0°) + 1*sin(1°) + 2*sin(2°) + 3*sin(3°) + . . . + 180*sin(180°) by adding 0*sin(0°) = 0 as the first term.
Then I can write
R = 0*sin(0°) + 1*sin(1°) + 2*sin(2°) + 3*sin(3°) + . . . + 180*sin(180°) (1)
R = 180*sin(180°) + 179*sin(179°) + 178*sin(178°) + 177*sin(177°) + . . . + 0*sin(0°). (2)
Note that sin(0°) = sin(180°); sin(1°) = sin(179°); sin(2°) = sin(178°); sin(3°) = sin(177°); and so on.
Therefore, adding (1) and (2)
2R = 180*(sin(0°) + sin(1°) + sin(2°) + sin(3°) + . . . + sin(90°)).
So, our sum R is the same as
R = 90*(sin(0°) + sin(1°) + sin(2°) + sin(3°) + . . . + sin(90°)).
Now, let z = cos(1°) + i*sin(1°) is this complex number.
Then, according to the de Moivre's formula
= cos(2°) + i*sin(2°)
= cos(3°) + i*sin(3°),
. . . . . .
= cos(90° + i*sin(90°),
and the sum R is 90 times the imaginary part of the sum of the geometric progression
Q = 1 + + + + + . . . + .
The sum of the geometric progression is
= = now I will work to extract the imaginary part = =
= .
So, the imaginary part has the DENOMINATOR (cos(1°)-1)^2+sin^2(1°) = 2-2*cos(1°) = 2*(1-cos(1°)).
The imaginary part has the NUMERATOR sin(91°)*(cos(1°)-1) - (cos(91°)-1)*sin(1°) = sin(91°)*cos(1°) - cos(91°)*sin(1°) - sin(91°) + sin(1°) =
= sin(90°) - sin(91°) + sin(1°) = 1 - cos(1°) + sin(1°).
Therefore, the answer is:
the sum R = 1*sin(1°) + 2*sin(2°) + 3*sin(3°) + . . . + 180*sin(180°) = .
You can transform it further as you want and/or as you need.
You can even get the numerical value, using your calculator.