Lesson OVERVIEW of LESSONS on Volume of SPHERES
Algebra
->
Volume
-> Lesson OVERVIEW of LESSONS on Volume of SPHERES
Log On
Geometry: Volume, Metric volume
Geometry
Solvers
Solvers
Lessons
Lessons
Answers archive
Answers
Source code of 'OVERVIEW of LESSONS on Volume of SPHERES'
This Lesson (OVERVIEW of LESSONS on Volume of SPHERES)
was created by by
ikleyn(52787)
:
View Source
,
Show
About ikleyn
:
<H2>OVERVIEW of LESSONS on Volume of Spheres</H2>For your convenience, this file contains - the list of my lessons on volume of spheres in this site, - the formula for calculating the volume of spheres, and - the list of relevant solved problems. <H3>Spheres</H3>A <B>sphere</B> is a surface in a <B>3D</B> space all points of which are <B>equidistant</B> from one point called the <B>center of the sphere</B>. <B>Figure 1a</B> shows the sphere. A <B>radius of a sphere</B> is a straight segment connecting the center of the sphere with a point on the sphere surface (<B>Figure 1b</B>). A <B>diameter of a sphere</B> is the straight segment passing through the center of the sphere and connecting the opposite points of the sphere (<B>Figure 1c</B>). <TABLE> <TR> <TD> {{{drawing( 180, 180, -4.5, 4.5, -4.5, 4.5, circle( 0.0, 0.0, 4.0, 4.0), circle( 0.0, 0.0, 0.1, 0.1), locate(-0.2, -0.1, O), green(ellipse(0.0, 0.0, 8, 4)) )}}} <B>Figure 1a</B>. A sphere </TD> <TD> {{{drawing( 180, 180, -4.5, 4.5, -4.5, 4.5, circle(0.0, 0.0, 4, 4), circle( 0.0, 0.0, 0.1, 0.1), locate(-0.2, -0.1, O), green(ellipse( 0.0, 0.0, 8, 4)), green(line( 0.0, 0.0, 2.4, 1.5)), locate( 1.2, 0.9, r) )}}} <B>Figure 1b</B>. A sphere and its radius </TD> <TD> {{{drawing( 180, 180, -4.5, 4.5, -4.5, 4.5, circle(0.0, 0.0, 4, 4), circle( 0.0, 0.0, 0.1, 0.1), locate(-0.2, -0.1, O), green(ellipse( 0.0, 0.0, 8, 4)), green(line(-2.4, -1.5, 2.4, 1.5)), locate( 1.2, 0.9, d) )}}} <B>Figure 1c</B>. A sphere and its diameter </TD> </TR> </TABLE> <H3>Properties of spheres</H3> 1. Every section of a sphere by a plane is a circle. 2. A tangent segment to a sphere released from a point in <B>3D</B> space outside the sphere is perpendicular to the radius of the sphere drawn from its center to the tangent point. 3. All tangent segments to a sphere released from one fixed point outside the sphere have the same length. <H3>Formula for calculating the volume of spheres</H3> The volume of a sphere</B> is {{{S}}} = {{{4/3}}}{{{pi}}}{{{r^3}}} = {{{1/6}}}{{{pi}}}{{{d^3}}}, where {{{r}}} is the radius of the sphere and {{{d}}} is the diameter of the sphere. <H3>My lessons on volume of spheres in this site</H3> - <A HREF=http://www.algebra.com/algebra/homework/Volume/Volume-of-spheres.lesson>Volume of spheres</A> under the topic <B>Volume, metric volume</B> of the section <B>Geometry</B>, and - <A HREF=http://www.algebra.com/algebra/homework/word/geometry/Solved-problems-on-volume-of-spheres.lesson>Solved problems on volume of spheres</A> under the topic <B>Geometry</B> of the section <B>Word problems</B>. <H3>Solved problems on volume of spheres</H3> - Find the volume of a sphere if its radius is of 10 cm. - Find the volume of a sphere if its radius is of 3 cm. <TABLE> <TR> <TD> - Find the volume of a composite body comprised of a right circular cylinder and a hemisphere attached center-to-center to one of the cylinder bases if both the cylinder diameter and the hemisphere diameter are of 20 cm, and the cylinder height is of 40 cm. - Find the volume of a composite body comprised of a right circular cylinder and a hemisphere attached center-to-center to one of the cylinder bases if both the cylinder diameter and the hemisphere diameter are of 10 cm, and the cylinder height is of 20 cm. </TD> <TD>{{{drawing( 105, 98, -3.5, 3.5, -1.0, 5.5, ellipse( 0.5, 3.5, 3.0, 1.0), ellipse( 0.5, 0.0, 3.0, 1.0), line( -1, 3.5, -1, 0.0), line( 2, 3.5, 2, 0.0), arc ( 0.5, 3.5, 3.00, 3.00, 180, 360), arc ( 0.5, 3.5, 3.06, 3.06, 180, 360) )}}} </TD> </TR> </TABLE> <TABLE> <TR> <TD> - Find the volume of a composite body comprised of a cone and a hemisphere attached center-to-center to the cone base if both the cone base diameter and the hemisphere diameter are of 20 cm and the cone height is of 10 cm. - Find the volume of a composite body comprised of a cone and a hemisphere attached center-to-center to the cone base if both the cone base diameter and the hemisphere diameter are of 10 cm and the cone height is of 5 cm. </TD> <TD>{{{drawing( 98, 83, -3.0, 3.5, 0.0, 5.5, ellipse( 0.5, 3.5, 3.0, 1.0), line( -1.0, 3.5, 0.5, 0.0), line( 2.0, 3.5, 0.5, 0.0), arc ( 0.5, 3.5, 3.00, 3.00, 180, 360), arc ( 0.5, 3.5, 3.06, 3.06, 180, 360) )}}} </TD> </TR> </TABLE><TABLE> <TR> <TD> - Find the volume of a composite body comprised of a cube and a hemisphere attached center-to-center to one of the cube faces if both the cube edge measure and the hemisphere diameter are of 20 cm. - Find the volume of a composite body comprised of a cube and a hemisphere attached center-to-center to one of the cube faces if both the cube edge measure and the hemisphere diameter are of 10 cm. </TD> <TD> {{{drawing( 90, 90, -2.5, 3.5, -0.5, 5.5, line ( 0.0, 0.0, 3.0, 0.0), line ( 0.0, 0.0, 0.0, 3.0), line ( 0.0, 0.0, -2.0, 0.8), line ( 0.0, 3.0, 3.0, 3.0), line ( 3.0, 3.0, 3.0, 0.0), line ( 0.0, 3.0, -2.0, 3.8), line ( -2.0, 3.8, 1.0, 3.8), line ( -2.0, 3.8, -2.0, 0.8), green(line ( 1.0, 3.8, 1.0, 0.8)), line ( 1.0, 3.8, 3.0, 3.0), green(line ( -2.0, 0.8, 1.0, 0.8)), green(line ( 1.0, 0.8, 3.0, 0.0)), ellipse( 0.52, 3.43, 2.54, 0.77), arc ( 0.52, 3.43, 2.54, 2.54, 175, 354) )}}} </TD> </TR> </TABLE><TABLE> <TR> <TD> - Find the volume of the sphere inscribed in a cone if the base diameter of the cone is of 24 cm and the height of the cone is of 16 cm. - Find the volume of the sphere inscribed in a cone if the base diameter of the cone is of 30 cm and the height of the cone is of 36 cm. </TD> <TD> {{{drawing( 105, 124, -3.5, 3.5, -3.8, 4.5, ellipse (0.0, -2.0, 6.0, 3.0), green(ellipse (0.0, 0.8, 3.2, 1.6)), line ( -2.75, -1.5, -1.375, 1.25), line ( 2.82, -1.5, 1.410, 1.25), line ( -1.375, 1.25, 0.0, 4.0), line ( 1.410, 1.25, 0.0, 4.0), green(line (0, -2, 0, 4)), circle( 0.0, -0.12, 1.88, 1.88) )}}} </TD> </TR> </TABLE> My lessons on volume of spheres and other 3D solid bodies in this site are <TABLE> <TR> <TD> <B>Lessons on volume of prisms</B> <A HREF=http://www.algebra.com/algebra/homework/Volume/_Volume-of-prisms.lesson>Volume of prisms</A> <A HREF=http://www.algebra.com/algebra/homework/word/geometry/Solved-problems-on-volume-of-prisms.lesson>Solved problems on volume of prisms</A> <A HREF=http://www.algebra.com/algebra/homework/Volume/OVERVIEW-of-LESSONS-on-volume-of-prisms.lesson>Overview of lessons on volume of prisms</A> </TD> <TD> <B>Lessons on volume of pyramids</B> <A HREF=http://www.algebra.com/algebra/homework/Volume/_Volume-of-pyramids.lesson>Volume of pyramids</A> <A HREF=http://www.algebra.com/algebra/homework/word/geometry/Solved-problems-on-volume-of-pyramids.lesson>Solved problems on volume of pyramids</A> <A HREF=http://www.algebra.com/algebra/homework/Volume/OVERVIEW-of-LESSONS-on-volume-of-pyramids.lesson>Overview of lessons on volume of pyramids</A> </TD> </TR> </Table><TABLE> <TR> <TD> <B>Lessons on volume of cylinders</B> <A HREF=http://www.algebra.com/algebra/homework/Volume/_Volume-of-cylinders.lesson>Volume of cylinders</A> <A HREF=http://www.algebra.com/algebra/homework/word/geometry/Solved-problems-on-volume-of-cylinders.lesson>Solved problems on volume of cylinders</A> <A HREF=http://www.algebra.com/algebra/homework/Volume/OVERVIEW-of-LESSONS-on-Volume-of-cylinders.lesson>Overview of lessons on volume of cylinders</A> </TD> <TD> <B>Lessons on volume of cones</B> <A HREF=http://www.algebra.com/algebra/homework/Volume/Volume-of-cones.lesson>Volume of cones</A> <A HREF=http://www.algebra.com/algebra/homework/word/geometry/Solved-problems-on-Volume-of-cones.lesson>Solved problems on volume of cones</A> <A HREF=http://www.algebra.com/algebra/homework/Volume/OVERVIEW-of-LESSONS-on-Volume-of-cones.lesson>Overview of lessons on volume of cones</A> </TD> <TD> <B>Lessons on volume of spheres</B> <A HREF=http://www.algebra.com/algebra/homework/Volume/Volume-of-spheres.lesson>Volume of spheres</A> <A HREF=http://www.algebra.com/algebra/homework/word/geometry/Solved-problems-on-Volume-of-spheres.lesson>Solved problems on volume of spheres</A> Overview of lessons on volume of spheres </TD> </TR> </Table> To navigate over all topics/lessons of the Online Geometry Textbook use this file/link <A HREF=https://www.algebra.com/algebra/homework/Triangles/GEOMETRY-your-online-textbook.lesson>GEOMETRY - YOUR ONLINE TEXTBOOK</A>.