Lesson Volume of pyramids
Algebra
->
Volume
-> Lesson Volume of pyramids
Log On
Geometry: Volume, Metric volume
Geometry
Solvers
Solvers
Lessons
Lessons
Answers archive
Answers
Source code of 'Volume of pyramids'
This Lesson (Volume of pyramids)
was created by by
ikleyn(52787)
:
View Source
,
Show
About ikleyn
:
<H2>Volume of pyramids</H2> <B>Pyramid</B> is a <B>3D</B> solid body with flat faces which has one distinguished face of a polygonal shape, while all other faces are of a triangular shape with a common <B>vertex</B> for all triangles. The distinguished face is called the <B>pyramid base</B>. The remaining faces are called the <B>lateral faces</B>. The lateral faces are of triangular form. Structurally a pyramid can be thought as a polygon on a plane and a point in a space out of the plane, which is connected with the polygon vertices by straight line segments - the <B>edges of the pyramid</B>. Figures <B>1a</B> - <B>1e</B> present the examples of pyramids. <TABLE> <TR> <TD> {{{drawing( 200, 225, -3.0, 3.5, -0.5, 3.8, line ( 0.0, 0.0, 3.0, 0.0), line ( 0.0, 0.0, -2.0, 0.8), green(line ( -2.0, 0.8, 1.0, 0.8)), green(line ( 1.0, 0.8, 3.0, 0.0)), line ( 0.0, 0.0, 0.5, 3.4), line ( 3.0, 0.0, 0.5, 3.4), green(line ( 1.0, 0.8, 0.5, 3.4)), line ( -2.0, 0.8, 0.5, 3.4), locate ( -2.2, -0.1, base), line ( -1.6, -0.1, -0.4, 0.4), locate ( -2.9, 2.6, lateral), locate ( -2.7, 2.3, faces), line ( -2.1, 1.9, -0.8, 1.5), line ( -1.8, 1.9, -0.6, 1.8) )}}} <B>Figure 1a</B>. Rectangular pyramid </TD> <TD> {{{drawing( 250, 225, -5.0, 5.0, -0.5, 5.0, line ( 0.5, 0.0, 4.5, 0.0), line ( 0.5, 0.0, -4.0, 1.5), line ( 0.5, 0.0, -0.5, 4.5), line ( 4.5, 0.0, -0.5, 4.5), line ( -4.0, 1.5, -0.5, 4.5), green(line ( -0.5, 4.5, -0.5, 1.5)), green(line ( -4.0, 1.5, -0.5, 1.5)), green(line ( -0.5, 1.5, 4.5, 0.0)), locate ( -4.8, 3.5, lateral), locate ( -4.5, 3.2, edge), line ( -3.7, 2.7, -3.0, 2.6), locate ( -4.8, 0.3, base_edge), line ( -3.4, 0.3, -2.3, 0.8) )}}} <B>Figure 1b</B>. Rectangular pyramid </TD> <TD> {{{drawing( 225, 225, -4.0, 5.0, -0.5, 7.5, line ( -0.8, 0.0, 4.0, 0.0), line ( -0.8, 0.0, -3.0, 1.5), green(line ( -3.0, 1.5, 4.0, 0.0)), line ( -0.8, 0.0, 0.0, 7.0), line ( 0.0, 7.0, 4.0, 0.0), line ( 0.0, 7.0, -3.0, 1.5) )}}} <B>Figure 1c</B>. Triangular pyramid </TD> <TD> {{{drawing( 225, 225, -4.0, 5.0, -0.5, 8.5, line ( -3.0, 1.5, 4.0, 0.0), green(line ( -3.0, 1.5, 2.0, 2.0)), green(line ( 2.0, 2.0, 4.0, 0.0)), line ( -3.0, 1.5, 2.0, 8.0), line ( 4.0, 0.0, 2.0, 8.0), green(line ( 2.0, 2.0, 2.0, 8.0)), locate ( -2.2, 0.2, base), line ( -1.6, 0.2, 1.2, 1.1), locate ( -3.3, 5.6, lateral), locate ( -3.1, 5.2, faces), line ( -2.1, 4.4, -0.6, 3.5), line ( -1.8, 4.4, -0.6, 4.1) )}}} <B>Figure 1d</B>. Triangular pyramid </TD> <TD> {{{drawing( 238, 232, -2.5, 7.0, -0.5, 8.6, line ( 0.0, 0.0, 4.0, 0.0), line ( 0.0, 0.0, -1.7, 1.5), green(line ( -1.7, 1.5, 1.0, 2.3)), green(line ( 1.0, 2.3, 4.5, 2.3)), green(line ( 4.5, 2.3, 6.5, 1.0)), line ( 6.5, 1.0, 4.0, 0.0), line ( 0.0, 0.0, 2.25, 7.15), line ( -1.7, 1.5, 2.25, 7.15), green(line ( 1.0, 2.3, 2.25, 7.15)), green(line ( 4.5, 2.3, 2.25, 7.15)), line ( 6.5, 1.0, 2.25, 7.15), line ( 4.0, 0.0, 2.25, 7.15) )}}} <B>Figure 1e</B>. Hexagonal pyramid </TD> </TR> </TABLE> The base of a pyramid can be any type of polygon. Depending on the shape of this polygon, the prism can be called a <B>triangular prism</B>, or <B>rectangular prism</B>, or <B>pentagonal</B>, <B>hexagonal</B> and so on. <TABLE> <TR> <TD> The <B>height of a pyramid</B> (sometimes called the <B>altitude of a pyramid</B>) is the perpendicular segment from the vertex, located out of the base plane, to the base (Figures <B>2a</B> and <B>2b</B>). If the polygon at the base of a pyramid is regular <B><U>and</U></B> all the pyramid lateral edges have the same length then the pyramid is called a <B>regular pyramid</B>. In a regular pyramid the altitude drops to the center of the regular polygon at the base. In other words, in a regular pyramid the foot of the altitude coincides with the center of the regular polygon at the base. This lesson is focused on calculating the volume of pyramids. </TD> <TD> {{{drawing( 220, 220, -2.5, 3.5, -0.5, 3.8, line ( 0.0, 0.0, 3.0, 0.0), line ( 0.0, 0.0, -2.0, 0.8), green(line ( -2.0, 0.8, 1.0, 0.8)), green(line ( 1.0, 0.8, 3.0, 0.0)), line ( 0.0, 0.0, 0.5, 3.4), line ( 3.0, 0.0, 0.5, 3.4), green(line ( 1.0, 0.8, 0.5, 3.4)), line ( -2.0, 0.8, 0.5, 3.4), red(line ( 0.5, 3.4, 0.5, 0.4)), red(locate ( 0.6, 1.7, h_height)) )}}} <B>Figure 2a</B>. The height of a pyramid </TD> <TD> {{{drawing( 238, 220, -2.5, 7.0, -0.8, 8.3, line ( 0.0, 0.0, 4.0, 0.0), line ( 0.0, 0.0, -1.7, 1.5), green(line ( -1.7, 1.5, 1.0, 2.3)), green(line ( 1.0, 2.3, 4.5, 2.3)), green(line ( 4.5, 2.3, 6.5, 1.0)), line ( 6.5, 1.0, 4.0, 0.0), line ( 0.0, 0.0, 2.25, 7.15), line ( -1.7, 1.5, 2.25, 7.15), green(line ( 1.0, 2.3, 2.25, 7.15)), green(line ( 4.5, 2.3, 2.25, 7.15)), line ( 6.5, 1.0, 2.25, 7.15), line ( 4.0, 0.0, 2.25, 7.15), red(line( 2.25, 1.2, 2.25, 7.15)), red(locate ( 2.35, 3.5, h_height)) )}}} <B>Figure 2b</B>. The height of a pyramid </TD> </TR> </TABLE> <H3>Formula for calculating the volume of pyramids</H3><TABLE> <TR> <TD> <B>The volume of a pyramid</B> is {{{V}}} = {{{1/3}}}{{{S[base]}}}.{{{h}}}, where {{{S[base]}}} is the area of the base of the pyramid and {{{h}}} are the pyramid's height. </TD> </TR> </TABLE> <H3>Example 1</H3>Find the volume of a regular pyramid with the square base (<B>Figure 3</B>) if the height of the pyramid is of 12 cm and the measure of the base edge is of 10 cm. <TABLE> <TR> <TD> <B>Solution</B> The area of the base of the given pyramid is {{{S[base]}}} = {{{10^2}}} = 100 {{{cm^2}}}. Hence, the volume of the pyramid is {{{1/3}}}{{{100}}}.{{{12}}} = 400 {{{cm^3}}}. <B>Answer</B>. The volume of the pyramid is 400 {{{cm^3}}}. </TD> <TD> {{{drawing( 220, 200, -2.5, 3.5, -0.5, 3.8, line ( 0.0, 0.0, 3.0, 0.0), line ( 0.0, 0.0, -2.0, 0.8), green(line ( -2.0, 0.8, 1.0, 0.8)), green(line ( 1.0, 0.8, 3.0, 0.0)), line ( 0.0, 0.0, 0.5, 3.4), line ( 3.0, 0.0, 0.5, 3.4), green(line ( 1.0, 0.8, 0.5, 3.4)), line ( -2.0, 0.8, 0.5, 3.4), red(line ( 0.5, 3.4, 0.5, 0.4)), locate ( 1.0, 0.0, 10), locate (-1.6, 0.5, 10), red(locate ( 0.54, 1.7, 12)) )}}} <B>Figure 3</B>. To the <B>Example 1</B> </TD> </TR> </TABLE> <H3>Example 2</H3>Find the volume of a regular pyramid with the square base (<B>Figure 4a</B>) if the lateral edge of the pyramid has the same measure of 12 cm as the the base edge has. Also find the angle between the lateral edge and the base of the pyramid. <TABLE> <TR> <TD> <B>Solution</B> First, let us find the area of the base of the given pyramid. Since the base is a square with the side measure of 12 cm, the area of the base is {{{S[base]}}} = {{{12^2}}} = 144 {{{cm^2}}}. Next, let us find the height of the pyramid. For it, let us consider the triangle {{{DELTA}}}<B>AOP</B> (<B>Figure 4b</B>), where the point <B>A</B> is one of the base vertices of the pyramid, the point <B>O</B> is the center of the square base of the pyramid, and the point <B>P</B> is the pyramid vertex. It is a right-angled triangle (the segment <B>OP</B> is the height of the pyramid). Its leg <B>AO</B> is half of the diagonal of the square base, and its measure is {{{12sqrt(2)/2}}} = {{{6sqrt(2)}}}. Therefore, the measure of the height <B>OP</B> is |<B>OP</B>| = {{{sqrt(abs(AP)^2 - abs(AO)^2)}}} = {{{sqrt(12^2 - (6sqrt(2))^2)}}} = {{{sqrt(144 - 72)}}} = {{{sqrt(72)}}} = {{{6sqrt(2)}}} cm. </TD> <TD> {{{drawing( 220, 200, -2.5, 3.5, -0.5, 3.8, line ( 0.0, 0.0, 3.0, 0.0), line ( 0.0, 0.0, -2.0, 0.8), green(line ( -2.0, 0.8, 1.0, 0.8)), green(line ( 1.0, 0.8, 3.0, 0.0)), line ( 0.0, 0.0, 0.5, 2.9), line ( 3.0, 0.0, 0.5, 2.9), green(line ( 1.0, 0.8, 0.5, 2.9)), line ( -2.0, 0.8, 0.5, 2.9), locate ( 1.0, 0.0, 12), locate (-1.6, 0.5, 12), locate (-1.4, 2.0, 12), locate ( 1.6, 1.9, 12), locate (-0.24, 1.7, 12) )}}} <B>Figure 4a</B>. To the <B>Example 2</B> </TD> <TD> {{{drawing( 220, 200, -2.5, 3.5, -0.5, 3.8, line ( 0.0, 0.0, 3.0, 0.0), line ( 0.0, 0.0, -2.0, 0.8), green(line ( -2.0, 0.8, 1.0, 0.8)), green(line ( 1.0, 0.8, 3.0, 0.0)), line ( 0.0, 0.0, 0.5, 2.9), line ( 3.0, 0.0, 0.5, 2.9), green(line ( 1.0, 0.8, 0.5, 2.9)), line ( -2.0, 0.8, 0.5, 2.9), red(line ( 0.5, 2.9, 0.5, 0.4)), locate ( 1.0, 0.0, 12), locate (-1.6, 0.5, 12), red(line ( 0.5, 0.4, 0.0, 0.0)), locate ( 0.6, 0.5, O), locate ( 0.4, 3.2, P), locate (-0.1, 0.0, A), locate (-0.24, 1.7, 12), arc (0, 0, 0.8, 0.8, 280, 323) )}}} <B>Figure 4b</B>. To the solution of the <B>Example 2</B> </TD> </TR> </TABLE>Now, the volume of the given pyramid is {{{V}}} = {{{1/3}}}{{{144}}}.{{{6sqrt(2)}}} = {{{288sqrt(2)}}} = 407.29 {{{cm^3}}} (approximately). On the way, we proved that the right-angled triangle {{{DELTA}}}<B>AOP</B> is isosceles: |<B>OP</B>| = |<B>AO</B>|. It means that the angle <I>L</I><B>OAP</B> is of 45°. <B>Answer</B>. The volume of the given pyramid is {{{288sqrt(2)}}} = {{{407.29}}} {{{cm^3}}} (approximately). The angle between the lateral edge and the base of the pyramid is of 45°. <H3>Example 3</H3>Find the volume of a regular hexagonal pyramid if its base edge is of 4 cm and the height of the pyramid is of 6 cm (<B>Figure 5</B>). <TABLE> <TR> <TD> <B>Solution</B> First, let us find the base area of the pyramid. Since the base is a regular hexagon, its area is {{{S}}} = {{{6}}}*({{{1/2}}}.{{{4}}}.{{{4}}}{{{sqrt(3)/2}}}) = {{{24}}}{{{sqrt(3)}}} {{{cm^2}}}. Now, the volume of the pyramid is {{{V}}} = {{{1/3}}}{{{S[base]}}}.{{{h}}} = {{{1/3}}}.{{{24}}}{{{sqrt(3)}}}.{{{6}}} = {{{48}}}{{{sqrt(3))}}} = {{{48}}}*{{{1.732}}} = 83.138 {{{cm^3}}} (approximately). <B>Answer</B>. The volume of the pyramid is 83.138 {{{cm^2}}} (approximately). </TD> <TD> {{{drawing( 238, 232, -2.5, 7.0, -0.8, 8.3, line ( 0.0, 0.0, 4.0, 0.0), line ( 0.0, 0.0, -1.7, 1.5), green(line ( -1.7, 1.5, 1.0, 2.3)), green(line ( 1.0, 2.3, 4.5, 2.3)), green(line ( 4.5, 2.3, 6.5, 1.0)), line ( 6.5, 1.0, 4.0, 0.0), line ( 0.0, 0.0, 2.25, 7.15), line ( -1.7, 1.5, 2.25, 7.15), green(line ( 1.0, 2.3, 2.25, 7.15)), green(line ( 4.5, 2.3, 2.25, 7.15)), line ( 6.5, 1.0, 2.25, 7.15), line ( 4.0, 0.0, 2.25, 7.15), red(line( 2.25, 1.2, 2.25, 7.15)), locate ( 1.9, -0.05, 4), locate ( 5.3, 0.60, 4), red(locate ( 2.35, 4.0, 6)), locate ( 2.1, 1.15, O), locate ( 2.1, 7.65, P), locate (-1.35, 0.95, 4) )}}} <B>Figure 5</B>. To the <B>Example 3</B> </TD> </TR> </TABLE> <H3>Example 4</H3>Find the volume of a regular tetrahedron if all its edges are of 10 cm long (<B>Figure 6a</B>). <TABLE> <TR> <TD> <B>Solution</B> The base area of the given tetrahedron is the area of the equilateral triangle with the side measure of 10cm. So, the base area is equal to {{{S[base]}}} = {{{1/2}}}.{{{10}}}.{{{10}}}{{{sqrt(3)/2}}} = {{{25}}}{{{sqrt(3)}}}. Next, let us find the measure of the height of the given tetrahedron (<B>Figure 6b</B>). The height <B>OP</B> of the given tetrahedron drops to the center <B>O</B> of its base, which is the intersection point of the base altitudes, medians and angle bisectors. It is well known fact of <B>Planimetry</B> that the intersection point of medians of a triangle divides them in proportion 2:1 counting from the vertices (see the lesson <A HREF=http://www.algebra.com/algebra/homework/Triangles/Medians-of-a-triangle-are-concurrent.lesson>Medians of a triangle are concurrent</A> in this site). Thus the segment <B>OA</B> in <B>Figure 6b</B> has the length of two third of the altitude of the base triangle, i.e. |<B>OA</B>| = {{{2/3}}}.{{{10}}}{{{sqrt(3)/2}}} = {{{10*sqrt(3)/3}}}. </TD> <TD> {{{drawing( 250, 225, -2.5, 4.5, -0.8, 8.2, line ( 0.0, 0.0, 4.0, 0.0), line ( 0.0, 0.0, -2.0, 1.5), green(line ( -2.0, 1.5, 4.0, 0.0)), line ( 0.667, 7.0, 0.0, 0.0), line ( 0.667, 7.0, 4.0, 0.0), line ( 0.667, 7.0, -2.0, 1.5), locate( 1.4, -0.1, 10), locate(-1.7, 0.9, 10), locate( 1.2, 1.3, 10), locate( 0.4, 3.7, 10), locate( 2.5, 3.9, 10), locate(-1.3, 4.4, 10) )}}} <B>Figure 6a</B>. To the <B>Example 4</B> </TD> <TD> {{{drawing( 250, 225, -2.5, 4.5, -0.8, 8.2, line ( 0.0, 0.0, 4.0, 0.0), line ( 0.0, 0.0, -2.0, 1.5), green(line ( -2.0, 1.5, 4.0, 0.0)), line ( 0.667, 7.0, 0.0, 0.0), line ( 0.667, 7.0, 4.0, 0.0), line ( 0.667, 7.0, -2.0, 1.5), locate( 1.4, -0.1, 10), locate(-1.7, 0.9, 10), locate( 1.2, 1.3, 10), locate(-0.2, 3.7, 10), locate( 2.5, 3.9, 10), locate(-1.3, 4.4, 10), locate (-0.15, 0.0, A), locate ( 0.60, 7.6, P), locate ( 0.73, 0.7, O), red(line (0.667, 0.5, 0.667, 7.0)), red(line (0.667, 0.5, 0.0, 0.0)) )}}} <B>Figure 6b</B>. To the solution of the <B>Example 4</B> </TD> </TR> </TABLE>Now, the height of the pyramid is {{{h}}} = {{{sqrt(abs(AP)^2 - abs(OP)^2)}}} = {{{sqrt(10^2 - (10*sqrt(3)/3)^2)}}} = {{{sqrt(100 - 100/3)}}} = {{{10*sqrt(2)/sqrt(3)}}}, and the volume of our tetrahedron is {{{V}}} = {{{1/3}}}.{{{S[base]}}}.{{{h}}} = {{{1/3}}}.{{{25}}}{{{sqrt(3)}}}.{{{10*sqrt(2)/sqrt(3)}}} = {{{250*sqrt(2)/3}}} = {{{10^3*sqrt(2)/12}}} = 117.85 {{{cm^3}}} (approximately). <B>Answer</B>. The volume of the given tetrahedron is {{{10^3*sqrt(2)/12}}} = 117.85 {{{cm^3}}} (approximately). (I intentionally presented the answer via the dimension of the tetrahedron's edge). The general formula for the volume of a regular tetrahedron with the edge size {{{l}}} is {{{l^3*sqrt(2)/12}}}. You can prove this formula yourself using the same arguments). <H3>Example 5</H3>Find the volume of a composite solid body of a "diamond" shape which comprises of two regular tetrahedrons joined face to face (<B>Figure 7</B>), if all their edges are of 4 cm long. <TABLE> <TR> <TD> <B>Solution</B> We are given a 3D body of a "diamond" shape comprised of two regular tetrahedrons whose two faces are joined and overposed each to the other (<B>Figure 7</B>). The total volume of our solid body is twice the volume of the single regular tetrahedron with the side measure of 4 cm. The later is equal to {{{4^3*sqrt(2)/12}}}, according to the solution of the <B>Example 4</B> above. Thus the volume of the composite body under consideration is {{{2}}}.{{{4^3*sqrt(2)/12}}} = {{{128*sqrt(2)/12}}} = {{{32*sqrt(2)/3}}} = 15.085 {{{cm^3}}} (approximately). </TD> <TD> {{{drawing( 160, 220, -2.5, 4.5, -6.5, 8.0, line ( 0.0, 0.0, 4.0, 0.0), line ( 0.0, 0.0, -2.0, 1.5), green(line ( -2.0, 1.5, 4.0, 0.0)), line ( 0.667, 7.0, 0.0, 0.0), line ( 0.667, 7.0, 4.0, 0.0), line ( 0.667, 7.0, -2.0, 1.5), locate( 1.4, -0.1, 4), locate(-1.1, 0.7, 4), locate( 1.2, 1.7, 4), locate( 0.4, 3.7, 4), locate( 2.6, 3.9, 4), locate(-1.3, 4.4, 4), line ( 0.667, -5.4, 0.0, 0.0), line ( 0.667, -5.4, 4.0, 0.0), line ( 0.667, -5.4, -2.0, 1.5), locate( 0.4, -2.0, 4), locate( 2.4, -2.4, 4), locate(-1.0, -2.0, 4) )}}} <B>Figure 7</B>. To the <B>Example 5</B> </TD> </TR> </TABLE><B>Answer</B>. The volume of the composite body under consideration is {{{2}}}.{{{4^3*sqrt(2)/12}}} = 15.085 {{{cm^3}}} (approximately). <H3>Example 6</H3>Find the volume of a body obtained from the regular tetrahedron with the edge measure of 10 cm after cutting off the part of the tetrahedron by the plane parallel to one of its faces in a way that the cutting plane bisects the three edges of the original tetrahedron (truncated tetrahedron, <B>Figure 7</B>). <TABLE> <TR> <TD> <B>Solution</B> The strategy solving this problem is to find first the volume of the regular tetrahedron with the edge measure of 10 cm and then to distract the volume of the regular tetrahedron with the edge measure of 5 cm. The volume of the original regular tetrahedron was found in the solution of the <B>Example 4</B> above. It is equal to {{{10^3*sqrt(2)/12}}} = 117.85 {{{cm^3}}} (approximately). The volume of the smaller regular tetrahedron with the edge size of 5 cm can be found using similar formula with replacing the value of the edge size of 10 cm by 5 cm. So, the volume of the smaller tetrahedron is {{{5^3*sqrt(2)/12}}} = 14.73 {{{cm^3}}} (approximately). </TD> <TD> {{{drawing( 250, 225, -2.5, 4.5, -0.8, 8.2, line ( 0.0, 0.0, 4.0, 0.0), line ( 0.0, 0.0, -2.0, 1.5), green(line ( -2.0, 1.5, 4.0, 0.0)), line ( 0.667, 7.0, 0.0, 0.0), line ( 0.667, 7.0, 4.0, 0.0), line ( 0.667, 7.0, -2.0, 1.5), locate( 1.4, -0.1, 10), locate(-1.6, 0.9, 10), locate( 1.2, 1.3, 10), locate( 0.3, 2.5, 5), locate( 3.0, 2.8, 5), locate(-1.6, 3.4, 5), line ( 0.333, 3.5, 2.333, 3.5), line ( 0.333, 3.5, -0.666, 4.25), line ( -0.666, 4.25, 2.333, 3.5), green(line ( 0.333, 3.5, 0.667, 7.0)), green(line ( -0.666, 4.25, 0.667, 7.0)), green(line ( 2.333, 3.5, 0.667, 7.0)), locate( 0.6, 5.5, 5), locate( 1.5, 5.8, 5), locate(-0.3, 6.1, 5) )}}} <B>Figure 7</B>. To the <B>Example 5</B> </TD> </TR> </TABLE>Now, the volume of the truncated tetrahedron is 117.85 - 14.73 = 103.12 {{{cm^3}}} (approximately). <B>Answer</B>. The volume of the body under consideration (truncated regular tetrahedron) is {{{10^3*sqrt(2)/12}}} - {{{5^3*sqrt(2)/12}}} = 103.12 {{{cm^3}}} (approximately). My lessons on volume of pyramids and other 3D solid bodies in this site are <TABLE> <TR> <TD> <B>Lessons on volume of prisms</B> <A HREF=http://www.algebra.com/algebra/homework/Volume/_Volume-of-prisms.lesson>Volume of prisms</A> <A HREF=http://www.algebra.com/algebra/homework/word/geometry/Solved-problems-on-volume-of-prisms.lesson>Solved problems on volume of prisms</A> <A HREF=http://www.algebra.com/algebra/homework/Volume/OVERVIEW-of-LESSONS-on-volume-of-prisms.lesson>Overview of lessons on volume of prisms</A> </TD> <TD> <B>Lessons on volume of pyramids</B> Volume of pyramids <A HREF=http://www.algebra.com/algebra/homework/word/geometry/Solved-problems-on-volume-of-pyramids.lesson>Solved problems on volume of pyramids</A> <A HREF=http://www.algebra.com/algebra/homework/Volume/OVERVIEW-of-LESSONS-on-volume-of-pyramids.lesson>Overview of lessons on volume of pyramids</A> </TD> </TR> </Table><TABLE> <TR> <TD> <B>Lessons on volume of cylinders</B> <A HREF=http://www.algebra.com/algebra/homework/Volume/_Volume-of-cylinders.lesson>Volume of cylinders</A> <A HREF=http://www.algebra.com/algebra/homework/word/geometry/Solved-problems-on-volume-of-cylinders.lesson>Solved problems on volume of cylinders</A> <A HREF=http://www.algebra.com/algebra/homework/Volume/OVERVIEW-of-LESSONS-on-Volume-of-cylinders.lesson>Overview of lessons on volume of cylinders</A> </TD> <TD> <B>Lessons on volume of cones</B> <A HREF=http://www.algebra.com/algebra/homework/Volume/Volume-of-cones.lesson>Volume of cones</A> <A HREF=http://www.algebra.com/algebra/homework/word/geometry/Solved-problems-on-Volume-of-cones.lesson>Solved problems on volume of cones</A> <A HREF=http://www.algebra.com/algebra/homework/Volume/OVERVIEW-of-LESSONS-on-Volume-of-cones.lesson>Overview of lessons on volume of cones</A> </TD> <TD> <B>Lessons on volume of spheres</B> <A HREF=http://www.algebra.com/algebra/homework/Volume/Volume-of-spheres.lesson>Volume of spheres</A> <A HREF=http://www.algebra.com/algebra/homework/word/geometry/Solved-problems-on-Volume-of-spheres.lesson>Solved problems on volume of spheres</A> <A HREF=http://www.algebra.com/algebra/homework/Volume/OVERVIEW-of-LESSONS-on-Volume-of-spheres.lesson>Overview of lessons on volume of spheres</A> </TD> </TR> </Table> To navigate over all topics/lessons of the Online Geometry Textbook use this file/link <A HREF=https://www.algebra.com/algebra/homework/Triangles/GEOMETRY-your-online-textbook.lesson>GEOMETRY - YOUR ONLINE TEXTBOOK</A>.