SOLUTION: Information given: sin alpha=5/6, 90<alpha<180
and tan Beta=3/7, 180<Beta<270
what are cos(alpha+beta) sin(alpha+beta) and tan(alpha+beta)
Algebra ->
Trigonometry-basics
-> SOLUTION: Information given: sin alpha=5/6, 90<alpha<180
and tan Beta=3/7, 180<Beta<270
what are cos(alpha+beta) sin(alpha+beta) and tan(alpha+beta)
Log On
Question 966322: Information given: sin alpha=5/6, 90
and tan Beta=3/7, 180
what are cos(alpha+beta) sin(alpha+beta) and tan(alpha+beta) Answer by lwsshak3(11628) (Show Source):
You can put this solution on YOUR website! Information given: sin alpha=5/6, 90 and tan Beta=3/7, 180 what are cos(alpha+beta) sin(alpha+beta) and tan(alpha+beta)
***
sin(a)=5/6 (Q2)
..
tan(b)=3/7(Q3)
hypotenuse of reference right triangle in quadrant III=
..
cos(a+b)=cos(a)*cos(b)-sin(a)*sin(b)=(-√11/6)(-7√58/58)-(5/6)(-3√58/58)=7√638/348+15√58/348=(7√638+15√58)/348
..
sin(a+b)=sin(a)cos(b)+cos(a)sin(b)=(5/6)(-7√58/58)+(-√11/6)(-3√58/58)=-35√58/348+3√638/348=(-35√58+3√638)/348
..
tan(a+b)=sin(a+b)/cos(a+b)= (-35√58+3√638)/(7√638+15√58)/348
..
Check:
sin(a)=5/6(Q2)
a=123.56
tan(b)=3/7(Q3)
b=203.20
a+b=326.76
cos(a+b)=cos(326.76)=0.8364
exact value as computed above=(7√638+15√58)/348≈0.8363
sin(a+b)=sin(326.76)=-0.5481
exact value as computed above=(-35√58+3√638)/348≈-0.5482