SOLUTION: If cosθ = -2/3, and 450 degrees < θ < 540 degrees, find:
A) Exact value of cos(1/2)θ
B) Exact value of tan(2θ)
Algebra ->
Trigonometry-basics
-> SOLUTION: If cosθ = -2/3, and 450 degrees < θ < 540 degrees, find:
A) Exact value of cos(1/2)θ
B) Exact value of tan(2θ)
Log On
Question 964583: If cosθ = -2/3, and 450 degrees < θ < 540 degrees, find:
A) Exact value of cos(1/2)θ
B) Exact value of tan(2θ) Answer by lwsshak3(11628) (Show Source):
You can put this solution on YOUR website! If cosθ = -2/3, and 450 degrees < θ < 540 degrees, find:
A) Exact value of cos(1/2)θ
B) Exact value of tan(2θ)
***
..
sin(2x)=2sinxcosx=2sqrt(5)/3*-2/3=-(4√5)/9
cos(2x)=cos^2(x)-sin^2(x)=4/9-5/9=-1/9
tan(2x)=sin(2x)/cos(2x)=4√5
..
check:
cosx=-2/3
x=491.81˚
2x=983.62˚
x/2=245.91
cos(x/2)≈cos(245.91)≈-0.4082
exact value as computed above=√(1/6)≈-0.4082
tan(2x)=tan(983.62)≈8.94
exact value as computed above=4√5≈8.94