SOLUTION: Let f (x) = 8x/(sqrt(1 - x^2))
and
g(t) = sin(t) for 0 < t < pi/2
Find (f º g)(t) and simplify. Write your answer in terms of sin t and cos t.
(f º g)(t) =
Algebra ->
Trigonometry-basics
-> SOLUTION: Let f (x) = 8x/(sqrt(1 - x^2))
and
g(t) = sin(t) for 0 < t < pi/2
Find (f º g)(t) and simplify. Write your answer in terms of sin t and cos t.
(f º g)(t) =
Log On
Question 923455: Let f (x) = 8x/(sqrt(1 - x^2))
and
g(t) = sin(t) for 0 < t < pi/2
Find (f º g)(t) and simplify. Write your answer in terms of sin t and cos t.
(f º g)(t) =
Please explain
Thank you Answer by stanbon(75887) (Show Source):
You can put this solution on YOUR website! Let f (x) = 8x/(sqrt(1 - x^2))
and
g(t) = sin(t) for 0 < t < pi/2
---------------------------------------
Find (f º g)(t) and simplify.
---
f[sin(t)] = 8sin(t)/sqrt(1-sin^2(t))
---
= 8sin(t)/sqrt(cos^2(t))
= 8 sin(t)/cos(t)
----
= 8*tan(t)
---------------
Cheers,
Stan H.
====================
--------------------------
Write your answer in terms of sin t and cos t.
(f º g)(t) =