| 
 
 
| Question 918988:  Find sin2x, cos2x, and tan2x under the given conditions
 cosx=-3/5, for 3pie/2 < x < 2pie
 
 Answer by lwsshak3(11628)
      (Show Source): 
You can put this solution on YOUR website! Find sin2x, cos2x, and tan2x under the given conditions cosx=-3/5, for pie < x < 3pie/2
 ***
 You are working with a 3-4-5 reference right triangle in quadrant III where cos<0, sin<0
 cosx=-3/5
 sinx=-4/5
 ..
 sin2x=2sinxcosx=2*-4/5*-3/5=24/25
 cos2x=cos^2x-sin^2x=(-3/5)^2-(4/5)^2=9/25-16/25=-7/25
 tan2x=sin2x/cos2x=-24/7
 ..
 Check:
 cosx=-3/5(in quadrant III)
 x=233.13˚
 2x=466.26˚
 ..
 sin2x=sin(466.26˚)≈0.9600...
 exact value=24/25=0.9600
 ..
 cos2x=cos(466.26˚)≈-0.2799...
 exact value=-7/25=-0.2800
 ..
 tan2x=tan(466.26˚)≈-3.4286...
 exact value=-24/7≈-3.4285...
 | 
  
 | 
 |