You can put this solution on YOUR website! Prove the identity
**
(cos x-sin x)/(cos x+sin x) = sec 2 x-tan 2 x
start with left side:
(cos x-sin x)/(cos x+sin x)
multiply top and bottom by (cos x-sin x), making the bottom a difference if 2 squares
(cos x-sin x)/(cos x+sin x)*(cos x-sin x)/(cos x-sin x)
=(cos x-sin x)(cos x-sin x)/(cos x+sin x)(cos x-sin x)
=(cos^2x-2sinxcosx+sin^2x)/(cos^2x-sin^2x)
=(1-2sinxcosx)/cos2x
=(1-sin2x)/cos2x
=(1/cos2x)-(sin2x/cos2x)
=sec2x-tan2x
verified: left side=right side