| 
 
 
| Question 622018:  please help me solve for all:
 2cos^2x-cosx=1
 Answer by jim_thompson5910(35256)
      (Show Source): 
You can put this solution on YOUR website! 2cos^2x-cosx=1 
 2cos^2x-cosx=1
 
 2cos^2x-cosx-1=0
 
 2z^2-z-1=0  .... Let z = cosx
 
 2z^2-2z+z-1=0
 
 (2z^2-2z)+(z-1)=0
 
 2z(z-1)+(z-1)=0
 
 2z(z-1)+1(z-1)=0
 
 (2z+1)(z-1)=0
 
 (2z+1)(z-1)=0
 
 2z+1=0 or z-1=0
 
 z=-1/2 or z=1
 
 cosx=-1/2 or cosx=1
 
 x=arccos(-1/2) or x=arccos(1)
 ---------------------------------------
 x=arccos(-1/2)
 
 x=2pi/3+2pi*n or x = 4pi/3 + 2pi*n
 
 ---------------------------------------
 
 x=arccos(1)
 
 x=2pi*n
 
 
 So the solutions are:
 
 x=2pi/3+2pi*n, x = 4pi/3 + 2pi*n, or x=2pi*n
 | 
  
 | 
 |