SOLUTION: Solve: cos<sup>-1</sup>(x) + cos<sup>-1</sup>(2x) = 60°

Algebra ->  Trigonometry-basics -> SOLUTION: Solve: cos<sup>-1</sup>(x) + cos<sup>-1</sup>(2x) = 60°       Log On


   



Question 518554: Solve: cos-1(x) + cos-1(2x) = 60°

Answer by Edwin McCravy(20056) About Me  (Show Source):
You can put this solution on YOUR website!
cos-1(x) + cos-1(2x) = 60°

Let alpha = cos-1(x)
Let beta = cos-1(2x)

Then cos(alpha) = x
and cos(beta) = 2x

So the equation

cos-1(x) + cos-1(2x) = 60°

becomes 

alpha + beta = 60°

Take the cosine of both sides:

cos(alpha+beta) = cos(60°)

Using an identity for cos(alpha+beta),

cos(alpha)cos(beta) - sin(alpha)sin(beta) = 1%2F2

Then since cos(alpha) = x and cos(beta) = 2x

x(2x) - sin(alpha)sin(beta) = 1%2F2

2x² - sin(alpha)sin(beta) = 1%2F2

Now we have to find the sines.  We use the identity:

sin²theta + cos²theta = 1

sin²theta = 1 - cos²theta 
          ___________ 
sintheta = ±Ö1 - cos²theta

The sign of the sine depends on what quadrants alpha and beta are in.  We consider all cases
           ___________     ______
sin(a) = ±Ö1 - cos²(a) = ±Ö1 - x²
           ___________     __________    _________ 
sin(b) = ±Ö1 - cos²(b} = ±Ö1 - (2x)² = ±Ö1 - 4x²

Substituting in

2x² - sin(alpha)sin(beta) = 1%2F2
       ______  _______
2x² ± Ö1 - x²·Ö1 - 4x² = 1%2F2

       _________________
2x² ± Ö(1 - x²)(1 - 4x²) = 1%2F2

Multiply both sides by 2 to clear of the fraction:

        _________________
4x² ± 2Ö(1 - x²)(1 - 4x²) = 1

Isolate the radical term:

         ___________________
      ±2Ö(1 - x²)(1 - 4x²) = 1 - 4x²

Square both sides:

        4(1 - x²)(1 - 4x²) = (1 - 4x²)²

          4(1 - 5x² + 4x4) = 1 - 8x² + 16x4

           4 - 20x² + 16x4 = 1 - 8x² + 16x4

                     -12x² = -3        
                          
                        x² = %28-3%29%2F%28-12%29

                        x² = 1%2F4
                          
                         x = ±1%2F2

We must check for extraneous solutions:

Checking 1%2F2:

cos-1(x) + cos-1(2x) = 60°

cos-1(1%2F2) + cos-1(2·1%2F2) = 60°

60° + cos-1(1) = 60°

60° + 0° = 60°
   
60° = 60°

That checks, so 1%2F2 is a solution.

Checking -1%2F2:

cos-1(x) + cos-1(2x) = 60°

cos-1(-1%2F2) + cos-1(2·-1%2F2) = 60°

120° + cos-1(-1) = 60°

120° + 180° = 60°
   
300° = 60°

That's false, so the only solution is 

x = 1%2F2

Edwin