SOLUTION: \cos A=\frac{5}{13}cosA= 13 5 ​ and \sin B=\frac{12}{37}.sinB= 37 12 ​ . Find the value of \cos(A+B)cos(A+B) in simplest form.

Algebra ->  Trigonometry-basics -> SOLUTION: \cos A=\frac{5}{13}cosA= 13 5 ​ and \sin B=\frac{12}{37}.sinB= 37 12 ​ . Find the value of \cos(A+B)cos(A+B) in simplest form.      Log On


   



Question 1173969: \cos A=\frac{5}{13}cosA=
13
5

and \sin B=\frac{12}{37}.sinB=
37
12

. Find the value of \cos(A+B)cos(A+B) in simplest form.

Answer by ikleyn(52832) About Me  (Show Source):
You can put this solution on YOUR website!
.

Please print in txt-format using your keyboard.

Then re-post to the forum.

This site / (this forum) does accept input files in txt-format (plain text) ONLY.

If you will re-post, do not post to me personally.