SOLUTION: How to prove that {{{sinxcos^3x-cosxsin^3x=(1/4)(sin4x)}}}?

Algebra ->  Trigonometry-basics -> SOLUTION: How to prove that {{{sinxcos^3x-cosxsin^3x=(1/4)(sin4x)}}}?      Log On


   



Question 1107683: How to prove that sinxcos%5E3x-cosxsin%5E3x=%281%2F4%29%28sin4x%29?
Found 2 solutions by rothauserc, ikleyn:
Answer by rothauserc(4718) About Me  (Show Source):
You can put this solution on YOUR website!
sin(x)cos^3(x) - cos(x)sin^3(x) = (1/4) * sin(4x)
:
multiply both sides of = by 4
:
4(sin(x)cos^3(x) - cos(x)sin^3(x)) = sin(4x)
:
apply the identity cos^2(x) = 1-sin^2(x) to cos^3(x)
:
4(cos(x)(1-sin^2(x))sin(x) - cos(x)sin^3(x)) = sin(4x)
:
4((cos(x)-cos(x)sin^2(x))sin(x) - cos(x)sin^3(x)) = sin(4x)
:
4(cos(x)sin(x)-cos(x)sin^3(x) - cos(x)sin^3(x)) = sin(4x)
:
4(cos(x)sin(x)-2cos(x)sin^3(x)) = sin(4x)
:
4cos(x)sin(x)-8cos(x)sin^3(x) = sin(4x)
:
use double angle identity on sin(4x)
:
4cos(x)sin(x)-8cos(x)sin^3(x) = 2cos(2x)sin(2x)
:
use double angle identity on cos(2x)
:
4cos(x)sin(x)-8cos(x)sin^3(x) = 2(1-2sin^2(x))sin(2x)
:
use double angle identity on sin(2x)
:
4cos(x)sin(x)-8cos(x)sin^3(x) = 2 * 2cos(x)sin(x) * (1-2sin^2(x))
:
4cos(x)sin(x)-8cos(x)sin^3(x) = 4cos(x)sin(x) - 8cos(x)sin^3(x)
:
both sides are the same, the identity is correct
:

Answer by ikleyn(52815) About Me  (Show Source):
You can put this solution on YOUR website!
.
  sinxcos%5E3x-cosxsin%5E3x=%281%2F4%29%28sin4x%29 = sin%28x%29%2Acos%28x%29%2A%28cos%5E2%28x%29-sin%5E2%28x%29%29 = 


     Use the basic trigonometric formulas  sin(x)*cos(x) = %281%2F2%29%2Asin%282x%29,   cos^2(x)-sin^2(x) = cos(2x)  to get


= %281%2F2%29%2Asin%282x%29%2Acos%282x%29 =  //use again  sin(2x)*cos(2x) = %281%2F2%29%2Acos%284x%29  to get //   = %281%2F4%29%2Acos4x%29.


That's all.