SOLUTION: Find the maximum and minimum values of each given function and state the corresponding values of x . ( 0 <= x < 2pi ) (1) {{{y=cos(x)+2cos(x/2)}}}

Algebra ->  Trigonometry-basics -> SOLUTION: Find the maximum and minimum values of each given function and state the corresponding values of x . ( 0 <= x < 2pi ) (1) {{{y=cos(x)+2cos(x/2)}}}      Log On


   



Question 1047187: Find the maximum and minimum values of each given function and state the corresponding values of x . ( 0 <= x < 2pi )
(1) y=cos%28x%29%2B2cos%28x%2F2%29

Answer by ikleyn(52786) About Me  (Show Source):
You can put this solution on YOUR website!
.
Find the maximum and minimum values of each given function and state the corresponding values of x. ( 0 <= x < 2pi )
(1) y=cos%28x%29%2B2cos%28x%2F2%29
~~~~~~~~~~~~~~~~~~~~~~~~~~~

Take the derivative on "x": y'(x) = -sin(x) + 2*(-sin(x/2)*(1/2) = - sin(x) - sin(x/2).

Equate it to zero. You will get an equation

-sin(x) - sin(x/2) = 0,   or

2*sin(x/2)*cos(x/2) + sin(x/2) = 0,   or   ( after factoring )

sin(x/2)*(2*cos(x/2) + 1) = 0.

It deploys in two independent equations


1.  sin(x/2) = 0  --->  x/2 = 0, pi, 2pi  --->  x = 0  and  x = 2pi  ( the only roots in the segment [0,2pi] ).


2.  2*cos(x/2) + 1 = 0  --->  cos(x/2) = -1%2F2  ---> x/2 = 2pi%2F3, 4pi%2F3  --->  x = 4pi%2F3  ( the only root in the segment [0,2pi] ).
 

Answer:

  a)  Maximum at x = 0:                        3.


  b)  Minimum at x = 4pi%2F3:  -1%2F2+%2B+2%2A%28-1%2F2%29   = -1.5.


  c)  Local maximum at x = 2pi: 1 + 2*(-1) = -1.



Plot y = cos(x)+2cos(x/2)