Lesson Product of trigonometric functions - Examples
Algebra
->
Trigonometry-basics
-> Lesson Product of trigonometric functions - Examples
Log On
Algebra: Trigonometry
Section
Solvers
Solvers
Lessons
Lessons
Answers archive
Answers
Source code of 'Product of trigonometric functions - Examples'
This Lesson (Product of trigonometric functions - Examples)
was created by by
ikleyn(52781)
:
View Source
,
Show
About ikleyn
:
<H2>Product of trigonometric functions - Examples</H2> The formulas for the product of trigonometric functions formulas are: {{{sin(alpha)*sin(beta) = (1/2)*(cos(alpha-beta) - cos(alpha+beta))}}}, {{{cos(alpha)*cos(beta) = (1/2)*(cos(alpha-beta) + cos(alpha+beta))}}}, {{{sin(alpha)*cos(beta) = (1/2)*(sin(alpha-beta) + sin(alpha+beta))}}}. The proofs of these formulas are presented in the lesson <A HREF= http://www.algebra.com/algebra/homework/Trigonometry-basics/Product-of-trigonometric-functions.lesson>Product of trigonometric functions</A> in this module. Below are examples of application of these formulas. <H3>Example</H3>Find sin(15°), cos(15°), tan(15°). <B>Solution</B> First, calculate sin(15°). Use the product formula for sines-sines: {{{sin(alpha)*sin(alpha) = (1/2)*(cos(alpha-alpha)-cos(alpha+alpha))}}}. Take {{{alpha}}} = 15°. You have {{{sin^2(alpha) = (1/2)*(cos(alpha-alpha) - cos(alpha+alpha))}}} = (1/2)*(cos(0°) - cos(30°)) = {{{(1/2)*(1-sqrt(3)/2) = (2-sqrt(3))/4}}}, hence sin(15°) = {{{sqrt(2-sqrt(3))/2}}}. Compare this with the formula sin(15°) = {{{(sqrt(6)-sqrt(2))/4}}}, which was obtained in the lesson <A HREF = http://www.algebra.com/algebra/homework/Trigonometry-basics/Addition-and-subtraction-formulas-Examples.lesson>Addition and subtraction formulas - Examples</A> in this module. Let me show you that the number {{{(sqrt(6)-sqrt(2))/4}}} is equal to {{{sqrt(2-sqrt(3))/2}}}. Indeed, the square of {{{(sqrt(6)-sqrt(2))/4}}} is equal to {{{(6 - 2sqrt(12) + 2)/16 = (8-4sqrt(3))/16 = (2-sqrt(3))/4}}}, exactly as the square of {{{sqrt(2-sqrt(3))/2}}}, so the original numbers are the same. Now, calculate cos(15°). Use the product formula for cosines-cosines: {{{cos(alpha)*cos(alpha) = (1/2)*(cos(alpha-alpha)+cos(alpha+alpha))}}}. Take {{{alpha}}} = 15°. You have {{{cos^2(alpha) = (1/2)*(cos(alpha-alpha) + cos(alpha+alpha))}}} = (1/2)*(cos(0°) + cos(30°)) = {{{(1/2)*(1+sqrt(3)/2) = (2+sqrt(3))/4}}}, hence cos(15°) = {{{sqrt(2+sqrt(3))/2}}}. Compare this with the formula cos(15°) = {{{(sqrt(6)+sqrt(2))/4}}}, which was obtained in the lesson <A HREF = http://www.algebra.com/algebra/homework/Trigonometry-basics/Addition-and-subtraction-formulas-Examples.lesson>Addition and subtraction formulas - Examples</A> in this module. Let me show you that the number {{{(sqrt(6)+sqrt(2))/4}}} is equal to {{{sqrt(2+sqrt(3))/2}}}. Indeed, the square of {{{(sqrt(6)+sqrt(2))/4}}} is equal to {{{(6 + 2sqrt(12) + 2)/16 = (8+4sqrt(3))/16 = (2+sqrt(3))/4}}}, exactly as the square of {{{sqrt(2+sqrt(3))/2}}}, so the original numbers are the same. Now, having ready expressions for sin(15°) and cos(15°), you can easily calculate tan(15°) as the fraction sin(15°)/cos(15°): tan(15°) = {{{(sqrt(6)-sqrt(2))/(sqrt(6)+sqrt(2))}}}. Note that, as it was shown in the lesson <A HREF = http://www.algebra.com/algebra/homework/Trigonometry-basics/Addition-and-subtraction-formulas-Examples.lesson>Addition and subtraction formulas - Examples</A> in this module, {{{(sqrt(6)-sqrt(2))/(sqrt(6)+sqrt(2)) = 2-sqrt(3)}}}. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ For your convenience, below is the list of my lessons on Trigonometry in this site in the logical order. They all are under the current topic <B>Trigonometry</B> in the section <B>Algebra II</B>. <B>Addition and subtraction formulas</B> <TABLE> <TR> <TD>{{{cos(alpha + beta) = cos(alpha)*cos(beta) - sin(alpha)*sin(beta)}}}, {{{cos(alpha - beta) = cos(alpha)*cos(beta) + sin(alpha)*sin(beta)}}}, {{{sin(alpha + beta) = sin(alpha)*cos(beta) + cos(alpha)*sin(beta)}}}, {{{sin(alpha - beta) = sin(alpha)*cos(beta) - cos(alpha)*sin(beta)}}}, {{{tan(alpha + beta) = (tan(alpha) + tan(beta))/(1 - tan(alpha)*tan(beta))}}}, {{{tan(alpha - beta) = (tan(alpha) - tan(beta))/(1 + tan(alpha)*tan(beta))}}}. </TD> <TD> The lessons <A HREF = http://www.algebra.com/algebra/homework/Trigonometry-basics/Addition-and-subtraction-formulas.lesson>Addition and subtraction formulas</A> and <A HREF = http://www.algebra.com/algebra/homework/Trigonometry-basics/Addition-and-subtraction-formulas-Examples.lesson>Addition and subtraction formulas - Examples</A> </TD> </TR> </TABLE> <B>Addition and subtraction of trigonometric functions</B> <TABLE> <TR> <TD>{{{sin(alpha) + sin(beta) = 2*sin((alpha+beta)/2)*cos((alpha-beta)/2)}}}, {{{sin(alpha) - sin(beta) = 2*sin((alpha-beta)/2)*cos((alpha+beta)/2)}}}, {{{cos(alpha) + cos(beta) = 2*cos((alpha+beta)/2)*cos((alpha-beta)/2)}}}, {{{cos(alpha) - cos(beta) = -2*sin((alpha+beta)/2)*sin((alpha-beta)/2)}}}, {{{tan(alpha) +- tan(beta) = sin(alpha +- beta)/(cos(alpha)*cos(beta))}}}, {{{cot(alpha) +- cot(beta) = sin(alpha +- beta)/(sin(alpha)*sin(beta))}}}. </TD> <TD> The lessons <A HREF = http://www.algebra.com/algebra/homework/Trigonometry-basics/Addition-and-subtraction-of-trigonometric-functions.lesson>Addition and subtraction of trigonometric functions</A> and <A HREF = http://www.algebra.com/algebra/homework/Trigonometry-basics/Addition-and-subtraction-of-trigonometric-functions-Examples.lesson>Addition and subtraction of trigonometric functions - Examples</A> </TD> </TR> </TABLE> <B>Product of trigonometric functions</B> <TABLE> <TR> <TD>{{{sin(alpha)*sin(beta) = (1/2)*(cos(alpha-beta) - cos(alpha+beta))}}}, {{{cos(alpha)*cos(beta) = (1/2)*(cos(alpha-beta) + cos(alpha+beta))}}}, {{{sin(alpha)*cos(beta) = (1/2)*(sin(alpha-beta) + sin(alpha+beta))}}}. </TD> <TD> The lessons <A HREF = http://www.algebra.com/algebra/homework/Trigonometry-basics/Product-of-trigonometric-functions.lesson>Product of trigonometric functions</A> and <B>Product of trigonometric functions - Examples</B> (this lesson) </TD> </TR> </TABLE> <B>Powers of trigonometric functions</B> <TABLE> <TR> <TD>{{{cos^2(alpha) = (1/2)*cos(2alpha) + 1/2}}}, {{{sin^2(alpha) = -(1/2)*cos(2alpha) + 1/2}}}, {{{cos^3(alpha) = (1/4)*cos(3alpha) + (3/4)*cos(alpha)}}}, {{{sin^3(alpha) = -(1/4)*sin(3alpha) + (3/4)*sin(alpha)}}}. </TD> <TD> The lessons <A HREF = http://www.algebra.com/algebra/homework/Trigonometry-basics/Powers-of-trigonometric-functions.lesson>Powers of Trigonometric functions</A> and <A HREF = http://www.algebra.com/algebra/homework/Trigonometry-basics/Powers-of=trigonometric-functions-Examples.lesson>Powers of Trigonometric functions - Examples</A> </TD> </TR> </TABLE> <B>Trigonometric functions of multiply argument</B> <TABLE> <TR> <TD>{{{cos(2alpha) = 2*cos^2(alpha) - 1}}}, {{{sin(2alpha) = 2*sin(alpha)*cos(alpha)}}}, {{{cos(3alpha) = 4*cos^3(alpha) - 3*cos(alpha)}}}, {{{sin(3alpha) = -4*sin^3(alpha) + 3*sin(alpha)}}}. </TD> <TD> The lessons <A HREF = http://www.algebra.com/algebra/homework/Trigonometry-basics/Trigonometric-functions-of-multiply-argument.lesson>Trigonometric functions of multiply argument</A> and <A HREF = http://www.algebra.com/algebra/homework/Trigonometry-basics/Trigonometric-functions-of-multiply-argument-Examples.lesson>Trigonometric functions of multiply argument - Examples</A> </TD> </TR> </TABLE> <B>Trigonometric functions of half argument</B> <TABLE> <TR> <TD>{{{sin^2(alpha/2) = (1-cos(alpha))/2}}}, {{{cos^2(alpha/2) = (1+cos(alpha))/2}}}, {{{tan(alpha/2) = sin(alpha)/(1+cos(alpha)) = (1-cos(alpha))/sin(alpha)}}}, {{{sin(alpha) = 2*tan(alpha/2)/(1+tan^2(alpha/2))}}}, {{{cos(alpha) = (1-tan^2(alpha/2))/(1+tan^2(alpha/2))}}}, {{{tan(alpha) = 2*tan(alpha/2)/(1-tan^2(alpha/2))}}}. </TD> <TD> The lessons <A HREF = http://www.algebra.com/algebra/homework/Trigonometry-basics/Trigonometric-functions-of-half-argument.lesson>Trigonometric functions of half argument</A> and <A HREF = http://www.algebra.com/algebra/homework/Trigonometry-basics/Trigonometric-functions-of-half-argument-Examples.lesson>Trigonometric functions of half argument - Examples</A> </TD> </TR> </TABLE> <B>Miscellaneous Trigonometry problems</B> The lesson <A HREF=http://www.algebra.com/algebra/homework/Trigonometry-basics/Miscellaneous-Trigonometry-problems.lesson>Miscellaneous Trigonometry problems</A> Use this file/link <A HREF=https://www.algebra.com/algebra/homework/complex/ALGEBRA-II-YOUR-ONLINE-TEXTBOOK.lesson>ALGEBRA-II - YOUR ONLINE TEXTBOOK</A> to navigate over all topics and lessons of the online textbook ALGEBRA-II.