Let the coordinates of the circumcenter (or "circumcentre",
as you spell it in the UK) be O(h,k). Then the circumradius
r = AO = BO = CO.
We use the distance formula d =
AO =
BO = =
CO = = = =
Squaring all three expressions:
(h-4)² + (k-3)² = (h+3)² + (k-2)² = (h-1)² + (k+6)²
Equating the first two:
(h-4)² + (k-3)² = (h+3)² + (k-2)²
Rearrange terms to create the difference of squares:
(h-4)² - (h+3)² = (k-2)² - (k-3)²
Factor (or as they say in UK, "factorise")
[(h-4) - (h+3)][(h-4) + (h+3)] = [(k-2) - (k-3)][(k-2) + (k-3)]
[h - 4 - h - 3][h - 4 + h + 3] = [k - 2 - k + 3][k - 2 + k - 3]
[-7][2h-1] = [1][2k-5]
-14h + 7 = 2k - 5
-14h = 2k - 12
-7h = k - 6
Equating the lst and 3rd
(h-4)² + (k-3)² = (h-1)² + (k+6)²
Rearrange terms to create the difference of squares:
(h-4)² - (h-1)² = (k+6)² - (k-3)²
Factor ("factorise")
[(h-4) - (h-1)][(h-4) + (h-1)] = [(k+6) - (k-3)][(k+6) + (k-3)]
[h - 4 - h + 1][h - 4 + h - 1] = [k + 6 - k + 3][k + 6 + k - 3]
[-3][2h-5] = [9][2k+3]
-6h + 15 = 18k + 27
-6h = 18k + 12
h = -3k - 2
So we solve this system of two equations:
-7h = k - 6
h = -3k - 2
by substitution and get
-7(-3k - 2) = k - 6
21k + 14 = k - 6
20k = -20
k = -1
h = -3(-1) - 2
h = 3 - 2
h = 1
So the circumcenter (or "circumcentre") is O(h,k) = O(1,-1)
The circumradius r is
r = AO = = = = = = 5
Edwin