SOLUTION: A farmer has 1000 feet of fence to enclose a rectangular area. What dimensions for the rectangle result in the maximum area enlosed by the fence?
Algebra ->
Surface-area
-> SOLUTION: A farmer has 1000 feet of fence to enclose a rectangular area. What dimensions for the rectangle result in the maximum area enlosed by the fence?
Log On
Question 335951: A farmer has 1000 feet of fence to enclose a rectangular area. What dimensions for the rectangle result in the maximum area enlosed by the fence? Answer by Fombitz(32388) (Show Source):
You can put this solution on YOUR website! The perimeter of the rectangle is,
The area of a rectangle is,
From the perimeter equation,
Convert the area function to vertex form ()to get the maximum value, which occurs at the vertex (,).
The maximum area occurs when ft and is equal to . ft
The maximum area for a given perimeter is a square.