SOLUTION: A can in the shape of a right circular cylinder has a paper label covering all of the can except the circular top and the circular bottom. If the radius of the top of the can is ab

Algebra ->  Surface-area -> SOLUTION: A can in the shape of a right circular cylinder has a paper label covering all of the can except the circular top and the circular bottom. If the radius of the top of the can is ab      Log On


   



Question 1183623: A can in the shape of a right circular cylinder has a paper label covering all of the can except the circular top and the circular bottom. If the radius of the top of the can is about 1.6 inches and the height of the can is 4 inches, which of the following best approximates the area, in square inches, of the part of the can covered by the label?
A. 20
B. 32
C. 40
D. 127

Answer by MathLover1(20849) About Me  (Show Source):
You can put this solution on YOUR website!
the total surface area of a cylinder is
TSA=2pi%2Arh%2B2pi%2Ar%5E2 where 2pi%2Ar%5E2 is the area of the top and of the bottom of can, so exclude it
let SA be surface area of the can covered by the label
SA=2pi%2Arh
given:
the radius r=1.6
the height of the can is h=4
SA+=2pi%2A1.6%2A4
SA=40.21238596594935....round it to whole number
SA+=40

so, answer is C. 40