Lesson OVERVIEW of LESSONS on Surface Area of CYLINDERS
Algebra
->
Surface-area
-> Lesson OVERVIEW of LESSONS on Surface Area of CYLINDERS
Log On
Geometry: Area and Surface Area
Geometry
Solvers
Solvers
Lessons
Lessons
Answers archive
Answers
Source code of 'OVERVIEW of LESSONS on Surface Area of CYLINDERS'
This Lesson (OVERVIEW of LESSONS on Surface Area of CYLINDERS)
was created by by
ikleyn(52781)
:
View Source
,
Show
About ikleyn
:
<H2>OVERVIEW of LESSONS on Surface Area of Cylinders</H2>For your convenience, this file contains - the list of my lessons on surface area of cylinders in this site, - the major formulas for calculating the surface area of cylinders, and - the list of relevant solved problems. <H3>Major notions related to the surface area of cylinders</H3>Figures <B>1a</B> - <B>1e</B> illustrate the major notions related to the surface area of cylinders. <TABLE> <TR> <TD> {{{drawing( 220, 225, -5.5, 5.5, -6.0, 5.4, ellipse( 1.0, -3.0, 8.0, 4.0), ellipse(-1.0, 2.0, 8.0, 4.0), line( -3.0, -3.0, -5.0, 2.0), line( 5.0, -3.0, 3.0, 2.0), locate ( -5.4, -5.1, base), line ( -4.6, -5.0, -1.0, -3.5), locate ( 2.7, 5.3, lateral), locate ( 2.7, 4.7, surface), line ( 3.9, 3.9, 3.3, 0.5), locate ( -5.4, 5.0, base), line ( -4.6, 4.1, -1.5, 2.5), green(line ( 1.0, -3, -1.0, 2)), circle ( 1.0, -3, 0.1, 0.1), locate ( 1.0, -2.4, O1), circle (-1.0, 2, 0.1, 0.1), locate (-1.0, 2.6, O2) )}}} <B>Figure 1a</B>. Cylinder (general definition) </TD> <TD> {{{drawing( 220, 225, -5.5, 5.5, -6.0, 5.4, ellipse( 0.0, -3.0, 8.0, 4.0), ellipse( 0.0, 2.0, 8.0, 4.0), line( -3.92, -3.0, -3.92, 2.0), line( 4.0, -3.0, 4.0, 2.0), locate ( -5.4, -5.1, base), line ( -4.6, -5.0, -1.0, -3.5), locate ( 2.7, 5.3, lateral), locate ( 2.7, 4.7, surface), line ( 3.9, 3.9, 3.3, 0.5), locate ( -5.4, 5.0, base), line ( -4.6, 4.1, -1.0, 2.5), green(line ( 0.0, -3.5, 0.0, 2.5)), circle ( 0.0, -3, 0.1, 0.1), locate ( 0.15, -3.0, O1), circle ( 0.0, 2, 0.1, 0.1), locate ( 0.15, 2.6, O2), locate ( 4.15, 0.2, h), locate (-4.45, 0.2, h), locate ( 3.3, -5.1, height), green(line ( 4.35, -4.9, 4.35, -0.6)) )}}} <B>Figure 1b</B>. Right circular cylinder </TD> <TD> {{{drawing( 440, 225, -5.5, 16.5, -6.0, 5.4, ellipse( 0.0, -3.0, 8.0, 4.0), ellipse( 0.0, 2.0, 8.0, 4.0), line( -3.92, -3.0, -3.92, 2.0), line( 4.0, -3.0, 4.0, 2.0), green(line( 0.0, 2.0, 2.7, 3.4)), locate(0.8, 3.3, r), green(line( 0.0, 0.0, 15.5, 0.0)), green(line( 0.0, -5.0, 15.5, -5.0)), green(line( 0.0, 0.0, 0.0, -5.0)), green(line(15.5, 0.0, 15.5, -5.0)), locate(7.0, 0.8, 2*pi*r), locate(5.0, -4.2, circumference=2*pi*r), locate (-0.55, -2.2, h), locate (15.65, -2.2, h) )}}} <B>Figure 1c</B>. Right circular cylinder and its flattening </TD> <TD> {{{drawing( 315, 225, -0.5, 6.5, -2.5, 2.5, line( 0.0, 0.5, 6.28, 0.5), line( 0.0, -0.5, 6.28, -0.5), line( 0.0, -0.5, 0.0, 0.5), line( 6.28, -0.5, 6.28, 0.5), circle( 2.0, 1.5, 1, 1), circle( 2.0, -1.5, 1, 1) )}}} <B>Figure 1d</B>. Flattening and the net of the surface of a right circular cylinder </TD> </TR> </TABLE> <H3>Major formulas for calculating the surface area of cylinders</H3><TABLE> <TR> <TD> 1. <B>The lateral surface area of a cylinder</B> is {{{S[lateral]}}} = {{{2pi}}}{{{r}}}{{{h}}}, where {{{r}}} is the radius of the cylinder and {{{h}}} is its height. 2. <B>The total surface area</B> <B>S</B> <B>of a cylinder</B> is {{{S}}} = {{{S[lateral]}}} + {{{2S[base]}}} = {{{2pi}}}{{{r}}}{{{h}}} + {{{2}}}{{{pi}}}{{{r^2}}} = {{{2pi}}}{{{r}}}*( {{{h+r}}} ), where {{{S[lateral]}}} is the lateral surface area of the cylinder and {{{S[base]}}} is the cylinder base area. </TD> <TD> (1) (2) </TD> </TR> </TABLE> <H3>My lessons on surface area of cylinders in this site</H3> - <A HREF=http://www.algebra.com/algebra/homework/Surface-area/Surface-area-of-cylinders.lesson>Surface area of cylinders</A> under the topic <B>Area and surface area</B> of the section <B>Geometry</B>, and - <A HREF=http://www.algebra.com/algebra/homework/word/geometry/Solved-problems-on-surface-area-of-cylinders.lesson>Solved problems on surface area of cylinders</A> under the topic <B>Geometry</B> of the section <B>Word problems</B>. <H3>Solved problems on surface area of cylinders</H3> - Find the lateral surface area of a cylinder if the radius of the cylinder is of 10 cm and the height of the cylinder is of 5 cm. Then find the total surface area of the cylinder. - Find the lateral surface area of a cylinder if the radius of the cylinder is of 5 cm and the height of the cylinder is of 10 cm. Then find the total surface area of the cylinder. <TABLE> <TR> <TD> - Find the lateral surface area of a cylinder if the rectangular axial section of the cylinder has the area {{{a}}} = 100 {{{cm^2}}}. - Find the lateral surface area of a cylinder if the rectangular axial section of the cylinder has the area {{{a}}} = 10 {{{cm^2}}}. - A through cylindrical hole is made in a cone along its axis. The radius of the base of the cone is of 5 cm and the height of the cone is of 10 cm. The diameter of the hole is of 4 cm. Find the surface area of the hole. - A through cylindrical hole is made in a cone along its axis. The radius of the base of the cone is of 5 cm and the height of the cone is of 10 cm. The diameter of the hole is of 2 cm. Find the surface area of the hole. </TD> <TD>{{{drawing( 110, 114, -5.5, 5.5, -6.0, 5.4, ellipse( 0.0, -3.0, 10.0, 6.0), ellipse( 0.0, 2.0, 10.0, 6.0), line( -5.0, -3.0, -5.0, 2.0), line( 5.0, -3.0, 5.0, 2.0), blue(line( 0.0, 3.0, 0.0, -3.5)), green(line(-4.6, -4, 4.1, -1.5)), green(line(-4.6, -4, -4.6, 0.9)), green(line( 4.1, -1.5, 4.1, 3.5)), green(line(-4.6, 0.9, 4.1, 3.5)) )}}} </TD> <TD> {{{drawing( 110, 114, -5.5, 5.5, -6.0, 5.4, green(circle( 0, 0, 0.1, 0.1)), ellipse( 0.0, 4.0, 4.0, 2.4), green(ellipse( 0.0, -3.0, 4.0, 2.4)), ellipse( 0.0, -3.0, 10.0, 6.0), line( 2.0, 4.0, 4.8, -2.2), line(-2.0, 4.0, -4.8, -2.2), green(line( 2.0, 4.0, 2.0, -3.0)), green(line(-2.0, 4.0, -2.0, -3.0)), blue(line( 0.0, 4.0, 0.0, -3.0)) )}}} </TD> </TR> </TABLE><TABLE> <TR> <TD> - A through cylindrical hole is made in a spherical solid body (in a ball) along its diameter. The radius of the ball is of 5 cm and the diameter of the hole is of 4 cm. Find the surface area of the hole. - A through cylindrical hole is made in a spherical solid body (in a ball) along its diameter. The radius of the ball is of 5 cm and the diameter of the hole is of 2 cm. Find the surface area of the hole. </TD> <TD>{{{drawing( 110, 110, -5.5, 5.5, -5.5, 5.5, circle( 0, 0, 5, 5), green(circle( 0, 0, 0.1, 0.1)), green(locate (-0.2, -0.05, O)), ellipse( 0.5, 3.0, 4.0, 2.4), green(ellipse(-0.5, -3.0, 4.0, 2.4)), green(line( -1.5, 3.0, -2.5, -3.0)), green(line( 2.5, 3.0, 1.5, -3.0)) )}}} </TD> </TR> </TABLE><TABLE> <TR> <TD> - Two cylinders are joined in a way that the base of one cylinder is overposed on the base of the other. The radius of one cylinder is 5 cm and the height is 2 cm. The radius of the other cylinder is 2 cm and the height is 5 cm. Find the surface area of the combined body. - Two cylinders are joined in a way that the base of one cylinder is overposed on the base of the other. The radius of one cylinder is 5 cm and the height is 2 cm. The radius of the other cylinder is 1 cm and the height is 5 cm. Find the surface area of the combined body. </TD> <TD> {{{drawing( 110, 114, -5.5, 5.5, -6.0, 5.4, ellipse( 0.0, -3.0, 10.0, 6.0), ellipse( 0.0, -1.0, 10.0, 6.0), line( -5.0, -3.0, -5.0, -1.0), line( 5.0, -3.0, 5.0, -1.0), ellipse( 0.0, -1.0, 4.0, 2.4), ellipse( 0.0, 4.0, 4.0, 2.4), line( 2.0, -1.0, 2.0, 4.0), line(-2.0, -1.0, -2.0, 4.0), blue(line( 0.0, 4.0, 0.0, -3.0)), locate (-3.0, -1.5, 1), locate (-1.1, 2.9, 2) )}}} </TD> </TR> </TABLE> My lessons on surface area of cylinders and other 3D solid bodies in this site are <TABLE> <TR> <TD> <B>Lessons on surface area of prisms</B> <A HREF=http://www.algebra.com/algebra/homework/Surface-area/Surface-area-of-prisms.lesson>Surface area of prisms</A> <A HREF=http://www.algebra.com/algebra/homework/word/geometry/Solved-problems-on-surface-area-of-prisms.lesson>Solved problems on surface area of prisms</A> <A HREF=http://www.algebra.com/algebra/homework/Surface-area/OVERVIEW-of-LESSONS-on-surface-area-of-prisms.lesson>Overview of lessons on surface area of prisms</A> </TD> <TD> <B>Lessons on surface area of pyramids</B> <A HREF=http://www.algebra.com/algebra/homework/Surface-area/Surface-area-of-pyramids.lesson>Surface area of pyramids</A> <A HREF=http://www.algebra.com/algebra/homework/word/geometry/Solved-problems-on-surface-area-of-pyramids.lesson>Solved problems on surface area of pyramids</A> <A HREF=http://www.algebra.com/algebra/homework/Surface-area/OVERVIEW-of-LESSONS-on-surface-area-of-pyramids.lesson>Overwiew of lessons on surface area of pyramids</A> </TD> </TR> </Table><TABLE> <TR> <TD> <B>Lessons on surface area of cylinders</B> <A HREF=http://www.algebra.com/algebra/homework/Surface-area/Surface-area-of-cylinders.lesson>Surface area of cylinders</A> <A HREF=http://www.algebra.com/algebra/homework/word/geometry/Solved-problems-on-surface-area-of-cylinders.lesson>Solved problems on surface area of cylinders</A> Overwiew of lessons on surface area of cylinders </TD> <TD> <B>Lessons on surface area of cones</B> <A HREF=http://www.algebra.com/algebra/homework/Surface-area/Surface-area-of-cones.lesson>Surface area of cones</A> <A HREF=http://www.algebra.com/algebra/homework/word/geometry/Solved-problems-on-surface-area-of-cones.lesson>Solved problems on surface area of cones</A> <A HREF=http://www.algebra.com/algebra/homework/Surface-area/OVERVIEW-of-LESSONS-on-surface-area-of-cones.lesson>Overwiew of lessons on surface area of cones</A> </TD> <TD> <B>Lessons on surface area of spheres</B> <A HREF=http://www.algebra.com/algebra/homework/Surface-area/Surface-area-of-spheres.lesson>Surface area of spheres</A> <A HREF=http://www.algebra.com/algebra/homework/word/geometry/Solved-problems-on-surface-area-of-spheres.lesson>Solved problems on surface area of spheres</A> <A HREF=http://www.algebra.com/algebra/homework/Surface-area/OVERVIEW-of-LESSONS-on-surface-area-of-spheres.lesson>Overwiew of lessons on surface area of spheres</A> </TD> </TR> </Table> To navigate over all topics/lessons of the Online Geometry Textbook use this file/link <A HREF=https://www.algebra.com/algebra/homework/Triangles/GEOMETRY-your-online-textbook.lesson>GEOMETRY - YOUR ONLINE TEXTBOOK</A>.