Solver Completing the Square for Quadratics
Algebra
->
Rectangles
-> Solver Completing the Square for Quadratics
Log On
Geometry: Rectangles
Geometry
Solvers
Solvers
Lessons
Lessons
Answers archive
Answers
Source code of 'Completing the Square for Quadratics'
This Solver (Completing the Square for Quadratics)
was created by by
Shin123(626)
:
View Source
,
Show
,
Put on YOUR site
About Shin123
:
Just a kid who solves math problems for fun :)
==section input Complete the square for the quadratic *[input a=1]x<sup>2</sup>+*[input b=-5]x+*[input c=6]=0. If you want all solutions, including imaginary solutions, toggle imaginary solutions on *[choice sol real-solutions imaginary-solutions] <---------- ==section solution perl $X=x; if ($b<0) { $bb=-$b; $sign="-"; } else { $bb=$b; $sign="+"; } if ($c<0) { $cc=-$c; $signa="-"; } else { $cc=$c; $signa="+"; } if ($a == 1) { # if ($b<0) { #$bb=-$b; # $sign="-"; # } else { # $bb=$b; #$sign="+"; # } # if ($c<0) { # $cc=-$c; #$signa="-"; # } else { #$cc=$c; # $signa="+"; # } print("To complete the square for the quadratic {{{x^2$sign$bb*x$signa$cc=0}}}, we must first find a square which when expanded, has x<sup>2</sup> and $b$X in it.\n\n"); $b1 = $b/2; if ($b1<0) { $signb1="-"; $b1b1=-$b1; } else { $signb1="+"; $b1b1=$b1; } $b4=$c-($b1 ** 2); if ($b4<0) { $b4b4=-$b4; $signb4="-"; } else { $b4b4=$b4; $signb4="+"; } print("{{{(x$signb1$b1b1)^2}}} is the square we are looking for. Expanding {{{(x$signb1$b1b1)^2}}} gets {{{x^2$sign$bb*x+" . ($b1 ** 2) . "}}}. So we have {{{x^2$sign$bb*x+$c=(x$signb1$b1b1)^2$signb4$b4b4}}}. So completing the square gives {{{x^2$sign$bb*x+$c=highlight((x$signb1$b1b1)^2$signb4$b4b4)}}}.\n "); #$b4 = $c-($b1 ** 2); if (-($b4) < 0) { print("Subtracting $b4 from both sides, we get {{{(x$signb1$b1b1)^2=-$b4}}}. Since the right side is negative, there are no real solutions."); if ($sol eq "imaginary-solutions") { print(" However, there are two imaginary solutions."); $q1=$b4; $q2=$q1 ** 0.5; $q3=-$b1; print("Taking the square root of both sides gives {{{system(x$signb1$b1b1= sqrt($q1)*i=$q2*i,x$signb1$b1b1 = -sqrt($q1)*i=-$q2*i)}}}. The two solutions are {{{system($q3+$q2*i,$q3-$q2*i)}}} "); } } elsif(-($b4)>0) { $b5 = -($b4); $b6 = $b5 ** 0.5; $ans1 = $b6-$b1; $ans2 = (-$b6)-$b1; print("Adding $b5 from both sides, we get {{{(x$signb1$b1b1)^2=$b5}}}. Taking the square root of both sides gives {{{system(x$signb1$b1b1=sqrt($b5)=$b6,x$signb1$b1b1=-sqrt($b5)=" . (-($b6)) . ")}}}. {{{system(x=$ans1,x=$ans2)}}} So the solutions are x=" . ($b6-$b1) . " and x=" . ((-$b6)-$b1) . "."); } else { print("So we have the equation {{{(x+$b1)^2=0}}}. There is only one unique solution. x=" . (-($b1)) . "."); } } elsif($a!=0) { print("To complete the square for the quadratic {{{$a*x^2$sign$bb*x$signa$cc=0}}}, we must first find a square which when expanded, has $a$X<sup>2</sup> and $b$X in it.\n\n"); $b2 = $b/$a; $c2 = $c/$a; $b1 = $b2/2; if ($b2<0) { $b2b2=-$b2; $signb2="-"; } else { $b2b2=$b2; $signb2="+"; } if ($c2<0) { $c2c2=-$c2; $signc2="-"; } else { $c2c2=$c2; $signc2="+"; } if ($b1<0) { $b1b1=-$b1; $signb1="-"; } else { $b1b1=$b1; $signb1="+"; } $b4=$c2-($b1 ** 2); if ($b4<0) { $b4b4=-$b4; $signb4="-"; } else { $b4b4=$b4; $signb4="+"; } print("Factoring $a from the left side gives {{{$a(x^2$signb2$b2b2*x$signc2$c2c2)=0}}}. {{{(x$signb1$b1b1)^2}}} is the square we are looking for. So we get {{{$a((x$signb1$b1b1)^2$signb4$b4b4)=0}}}.\n"); $b3 = $a*($c2-($b1 ** 2)); # $b4 = $c2-($b1 ** 2); if ($b3<0) { $b3b3=-$b3; $signb3="-"; } else { $b3b3=$b3; $signb3="+"; } print("Taking the $b4 out of the $a, we get {{{highlight($a(x$signb1$b1b1)^2$signb3$b3b3)}}}."); if (-($b3) < 0) { print(" Subtracting $b3 from both sides, we get {{{$a((x$signb1$b1b1)^2)=-$b3}}}. Since the right side is negative, there are no real solutions."); if ($sol eq "imaginary-solutions") { print(" However, there are two imaginary solutions. Dividing both sides by $a gives {{{(x$signb1$b1b1)^2=" . (-($b3)/$a) . "}}}."); $q1=$b3/$a; $q2=$q1 ** 0.5; $q3=-$b1; print("Taking the square root of both sides gives {{{system(x$signb1$b1b1=sqrt($q1)*i=$q2*i,x$signb1$b1b1=-sqrt($q1)*i=-$q2*i)}}}. The two solutions are {{{system($q3+$q2*i,$q3-$q2*i)}}} "); } } elsif(-($b3)>0) { $b5 = -($b3); $b7 = $b5/$a; $b6 = $b7 ** 0.5; $ans1 = $b6-$b1; $ans2 = (-$b6)-$b1; print(" Adding $b5 to both sides, we get {{{$a((x$signb1$b1b1)^2)=$b5}}}. Dividing both sides by $a gives {{{(x$signb1$b1b1)^2=$b7}}}. "); if($b7<0) { print("Since $b7 is negative, there are no real solutions."); if($sol eq "imaginary-solutions") { $O="i"; print("However, there are two imaginary solutions. Taking the square root of both sides gives {{{system(x+$signb1$b1b1=" . ((-$b7)**0.5) . "*i,x+$signb1$b1b1=-" . ((-$b7)**0.5) . "*i)}}}. So the solutions are {{{-$b1+" . ((-$b7)**0.5) . "$O}}} and {{{-$b1-" . ((-$b7)**0.5) . "$O}}}."); } } else { print("Taking the square root of both sides gives {{{system(x$signb1$b1b1=sqrt($b7)=$b6,x$signb1$b1b1=-sqrt($b7)=" . (-($b6)) . ")}}}. {{{system(x=$ans1,x=$ans2)}}} So the solutions are x=" . ($b6-$b1) . " and x=" . ((-$b6)-$b1) . "."); } } else { print("So we have the equation {{{$a(x$signb1$b1b1)^2=0}}}. Dividing both sides by $a gives {{{(x$signb1$b1b1)^2=0}}}. There is only one unique solution. x=" . (-($b1)) . "."); } } elsif($b!=0) { print "<font color=\"red\" size=\"4\">Since the coefficient of the x^2 term is zero, this is not a quadratic.</font>"; if($b==69) { if($c==42) { print "<font color=\"black\" size=\"1\">nice</font>"; } } } ==section output ==section check ==section practice perl my $a1 = randint(-5,5); while($a1==0) { $a1=randint(-5,5); } my $a2 = randint(-5,5); while($a2==0) { $a2=randint(-5,5); } my $a3 = randint(1,3); $a = $a3; $b = -$a3*($a1+$a2); $c = $a1*$a2*$a3;