SOLUTION: Find the area of a rectangle with a diagonal of 10 and a leg of 8

Algebra ->  Rectangles -> SOLUTION: Find the area of a rectangle with a diagonal of 10 and a leg of 8      Log On


   



Question 973451: Find the area of a rectangle with a diagonal of 10 and a leg of 8
Answer by macston(5194) About Me  (Show Source):
You can put this solution on YOUR website!
.
The diagonal of the rectangle forms the hypotenuse of two equal
right triangles which make up the entire rectangle. One leg of
the triangles is 8 and the hypotenuse of the triangles is 10,
c%5E2-a%5E2=b%5E2
10%5E2-8%5E2=b%5E2
100-64=b%5E2
36=b%5E2
6=b The other leg of the triangle is 6, so the base and
height of the triangles are 8 and 6, the area of each is
Area=(1/2)bh=(1/2)(8)(6)=24 square units
And since two make up the rectangle:
Area of rectangle=(2)(24 sq units)=48 square units