SOLUTION: among all rectangles that have a perimeter of 38,find the dimensions of the one whose area is the largest. reduce all fractions to the lowest terms
Algebra ->
Rectangles
-> SOLUTION: among all rectangles that have a perimeter of 38,find the dimensions of the one whose area is the largest. reduce all fractions to the lowest terms
Log On
Question 373407: among all rectangles that have a perimeter of 38,find the dimensions of the one whose area is the largest. reduce all fractions to the lowest terms Answer by fractalier(6550) (Show Source):
You can put this solution on YOUR website! For a given perimeter of a rectangle, it turns out that the greatest area is found by making it a square...that is, all sides equal...thus, in this case, each side would be 38/4 = 9 1/2.
The area is found by squaring 9.5 and getting 90.25 square units.