SOLUTION: The length of a rectangle is 2 meters less than twice the width, If the area of rectangle is 112 square meters what is the width?

Algebra ->  Rectangles -> SOLUTION: The length of a rectangle is 2 meters less than twice the width, If the area of rectangle is 112 square meters what is the width?       Log On


   



Question 1042886: The length of a rectangle is 2 meters less than twice the width,
If the area of rectangle is 112 square meters what is the width?

Found 2 solutions by Fombitz, MathTherapy:
Answer by Fombitz(32388) About Me  (Show Source):
You can put this solution on YOUR website!
L=W-2
L%2AW=112
Substituting,
%28W-2%29W=112
W%5E2-2W=112
W%5E2-2W%2B1=113
%28W-1%29%5E2=113
W-1=0+%2B-+sqrt%28113%29
W=1+%2B-+sqrt%28113%29m
Only the positive width makes sense in this problem,
W=1%2Bsqrt%28113%29
So then,
L=112%2F%281%2Bsqrt%28113%29%29
L=%28112%2F%281%2Bsqrt%28113%29%29%29%28%281-sqrt%28113%29%29%2F%281-sqrt%28113%29%29%29
L=%28112-112%2Asqrt%28113%29%29%2F%281-sqrt%28113%29%2Bsqrt%28113%29-113%29
L=%28112sqrt%28113%29-112%29%2F%28112%29
L=sqrt%28113%29-1m
or the easy way,
L=W-2
L=1%2Bsqrt%28113%29-2
L=sqrt%28113%29-1


Answer by MathTherapy(10552) About Me  (Show Source):
You can put this solution on YOUR website!

The length of a rectangle is 2 meters less than twice the width,
If the area of rectangle is 112 square meters what is the width?
Width: highlight_green%28matrix%281%2C2%2C+8%2C+m%29%29