SOLUTION: For the ellipse 8x^2− 48x + 2y^2− 4y + 66 = 0, find: (a) the coordinates of the centre, (b) the coordinates of the foci, (c) the eccentricity, (d) the equations o

Algebra ->  Quadratic-relations-and-conic-sections -> SOLUTION: For the ellipse 8x^2− 48x + 2y^2− 4y + 66 = 0, find: (a) the coordinates of the centre, (b) the coordinates of the foci, (c) the eccentricity, (d) the equations o      Log On


   



Question 840549: For the ellipse
8x^2− 48x + 2y^2− 4y + 66 = 0,
find:
(a) the coordinates of the centre,
(b) the coordinates of the foci,
(c) the eccentricity,
(d) the equations of the directrices.

Answer by richwmiller(17219) About Me  (Show Source):
You can put this solution on YOUR website!
ellipse
foci | ((3, 1-sqrt(3)) | (3, 1+sqrt(3)))=((3, -0.732051) | (3, 2.73205))
vertices | (3, -1) | (3, 3)
center | (3, 1)
semimajor axis length | 2
semiminor axis length | 1
area | 2 pi=6.28319
perimeter | 8 E(3/4)=9.68845
focal parameter | 1/sqrt(3)=0.57735
eccentricity | sqrt(3)/2=0.866025