SOLUTION: Vertex, axis, domain and range? Parabola {{{2x=y^2-4y+6}}}

Algebra ->  Quadratic-relations-and-conic-sections -> SOLUTION: Vertex, axis, domain and range? Parabola {{{2x=y^2-4y+6}}}      Log On


   



Question 680660: Vertex, axis, domain and range? Parabola 2x=y%5E2-4y%2B6
Answer by lwsshak3(11628) About Me  (Show Source):
You can put this solution on YOUR website!
Find vertex, axis, domain and range of
2x=y%5E2-4y%2B6
complete the square
2x=(y^2-4y+4)-4+6
2x=(y-2)^2+2
2x-2=(y-2)^2
(y-2)^2=2(x-1)
This is an equation of a parabola that opens rightwards.
Its standard form: (y-k)^2=4p(x-h), (h,k)=(x,y) coordinates of the vertex
For given equation: 2x=y%5E2-4y%2B6
vertex:(1,2)
axis of symmetry: y=2
domain: [1,∞)
range: (-∞,∞)
see graph below:
y=(2(x-1))^.5+2