SOLUTION: How do you write the equation of the indicated conic in standard form? Parabola: Vertex:(2,8) Directrix:Y =4 Hyperbola: Vertices:(-3,2),(7,2) Foci:(-5,2),(9,2)

Algebra ->  Quadratic-relations-and-conic-sections -> SOLUTION: How do you write the equation of the indicated conic in standard form? Parabola: Vertex:(2,8) Directrix:Y =4 Hyperbola: Vertices:(-3,2),(7,2) Foci:(-5,2),(9,2)      Log On


   



Question 618492: How do you write the equation of the indicated conic in standard form?
Parabola: Vertex:(2,8) Directrix:Y =4
Hyperbola: Vertices:(-3,2),(7,2) Foci:(-5,2),(9,2)

Answer by ewatrrr(24785) About Me  (Show Source):
You can put this solution on YOUR website!
 
Hi,
How do you write the equation of the indicated conic in standard form?
Parabola: Vertex:(2,8) Directrix:Y =4 Opens Upward
The standard form is %28x+-h%29%5E2+=+4p%28y+-k%29, where the focus is (h,k + p)
(x-2)^2 = 4p(y -8) p = 4, 4p = 16
y+=+highlight%281%2F16%29%28x-2%29%5E2+%2B+8
Hyperbola: Vertices:(-3,2),(7,2) Foci:(-5,2),(9,2) Opening Right and Left along y =2 C(2,2), a = 5
%28x-2%29%5E2%2F5%5E2+-+%28y-2%29%5E2%2Fb%5E2+=+1
Foci:(-5,2),(9,2) f = 7 = sqrt(25 + b^2), b = sqrt(24)
%28x-2%29%5E2%2F25+-+%28y-2%29%5E2%2F24+=+1