SOLUTION: Find an equation of the circle that passes through the points (2,3), (4,5), and (0,-3).

Algebra ->  Quadratic-relations-and-conic-sections -> SOLUTION: Find an equation of the circle that passes through the points (2,3), (4,5), and (0,-3).      Log On


   



Question 1076714: Find an equation of the circle that passes through the points (2,3), (4,5), and (0,-3).
Found 2 solutions by MathLover1, Alan3354:
Answer by MathLover1(20850) About Me  (Show Source):
You can put this solution on YOUR website!
Find an equation of the circle that passes through the points (2,3), (4,5), and (0,-3).
The standard form equation of a circle is +%28x-h%29%5E2%2B%28y-k%29%5E2=r%5E2 where
h and k are the x and y coordinates of the center of the circle
first find coordinates of the center (h,k) using given points
The first step is to set up these 3 equations by plugging the x- and y-coordinates of the points
(2,3), (4,5), and (0,-3) into the circle formula:
%282+-+h%29%5E2+%2B+%283+-+k%29%5E2+=+r%5E2.................eq1
%284+-+h%29%5E2+%2B+%285+-+k%29%5E2+=+r%5E2..................eq2
%280+-+h%29%5E2+%2B+%28-3+-+k%29%5E2+=+r%5E2.................eq3
----------------------------------------------
h%5E2+-+4+h+%2B+k%5E2+-+6+k+%2B+13+=+r%5E2.................eq1
h%5E2+-+8+h+%2B+k%5E2+-+10+k+%2B+41=+r%5E2..................eq2
h%5E2+%2B+k%5E2+%2B+6+k+%2B+9+=+r%5E2...............eq3
--------------------------------------------

h%5E2+-+4+h+%2B+k%5E2+-+6+k+%2B+13+=+r%5E2.................eq1
h%5E2+-+8+h+%2B+k%5E2+-+10+k+%2B+41=+r%5E2..................eq2...............subtract eq2 from eq1
---------------------------------------------------------
h%5E2+-+4+h+%2B+k%5E2+-+6+k+%2B+13-%28h%5E2+-+8+h+%2B+k%5E2+-+10+k+%2B+41%29=+r%5E2-r%5E2
h%5E2+-+4+h+%2B+k%5E2+-+6+k+%2B+13-h%5E2+%2B8+h-+k%5E2+%2B10+k+-+41=+0
4+h+%2B+4+k+-+28=+0............simplify
+h+%2B++k+-+7=+0.............eq1a

h^2 - 4h + k^2 - 6 k + 13 = r^2.................eq1
h^2 + k^2 + 6k + 9 = r^2...............eq3...........subtract eq3 from eq1
------------------------------------------
h%5E2+-+4h+%2B+k%5E2+-+6k+%2B+13++-%28h%5E2+%2B+k%5E2+%2B+6+k+%2B+9+%29=+r%5E2-r%5E2
h%5E2+-+4h+%2B+k%5E2+-+6k+%2B+13++-h%5E2+-+k%5E2+-+6+k+-+9+=0
-4+h+-+12k+%2B+4+=0............divide by -4
+h+%2B3k+-+1+=0..............................eq2a
use
h+%2B++k+-+7=+0...............eq1a
+h+%2B3+k+-+1+=0..............................eq2a
-------------------------------------------------------------subtract eq1a from eq2a
+h+%2B3+k+-+1+-%28h+%2B++k+-+7%29=0
h+%2B3+k+-+1+-h+-++k+%2B+7=0
2+k++%2B+6=0
2+k++=-6
+highlight%28k++=+-3%29
now find h
h+%2B++k+-+7=+0...............eq1a
h+-3-+7=+0
h-10=0
h=10

so, center is at (10,-3)
use one point, h and k to find r
%282+-+10%29%5E2+%2B+%283+-+%28-3%29%29%5E2+=+r%5E2.................eq1
%28+-+8%29%5E2+%2B+%283+%2B3%29%5E2+=+r%5E2
64+%2B+36+=+r%5E2
r%5E2=100
r=10
and, your equation is:
%28x-10%29%5E2%2B%28y%2B3%29%5E2=10%5E2
(2,3), (4,5), and (0,-3).


Answer by Alan3354(69443) About Me  (Show Source):
You can put this solution on YOUR website!
Find an equation of the circle that passes through the points (2,3), (4,5), and (0,-3).
-----------
Use determinants.
For this circle:

|(x^2+y^2)   x   y   1|
|   13       2   3   1|
|   41       4   5   1| = 0
|    9       0  -3   1|

=================
You can make an Excel sheet to solve it.
===================================================================
Or, a geometrical approach:
Find an equation of the circle that passes through the points A(2,3), B(4,5), and C(0,-3).
I labeled the points.
Find the perpendicular bisectors of AB and BC.
The intersection of the bisectors is the center of the circle, (h,k).
The distance from the center to any of the 3 points is the radius, r.
%28x-h%29%5E2+%2B+%28y-k%29%5E2+=+r%5E2