SOLUTION: show that (m^2-n^2, 2mn, m^2+n^2) is a phythagoream triple
Algebra
->
Pythagorean-theorem
-> SOLUTION: show that (m^2-n^2, 2mn, m^2+n^2) is a phythagoream triple
Log On
Geometry: Pythagorean theorem
Geometry
Solvers
Solvers
Lessons
Lessons
Answers archive
Answers
Click here to see ALL problems on Pythagorean-theorem
Question 619109
:
show that (m^2-n^2, 2mn, m^2+n^2) is a phythagoream triple
Answer by
richard1234(7193)
(
Show Source
):
You can
put this solution on YOUR website!
Those three expressions form a Pythagorean triple if and only if
(we can show that m^2 + n^2 > 2mn by the AM-GM inequality, m^2 + n^2 > m^2 - n^2 is obvious, given that m,n > 0).
Here, just show that LHS equal the RHS.
This is true, so the three expressions form a Pythagorean triple.