SOLUTION: A right triangle has a hypotenuse of length 15 and a leg of length 8. What is the area of the triangle? If necessary, round your answer to two decimal places
Algebra ->
Pythagorean-theorem
-> SOLUTION: A right triangle has a hypotenuse of length 15 and a leg of length 8. What is the area of the triangle? If necessary, round your answer to two decimal places
Log On
Question 262894: A right triangle has a hypotenuse of length 15 and a leg of length 8. What is the area of the triangle? If necessary, round your answer to two decimal places Found 3 solutions by mananth, drk, unlockmath:Answer by mananth(16946) (Show Source):
You can put this solution on YOUR website! A right triangle has a hypotenuse of length 15 and a leg of length 8. What is the area of the triangle? If necessary, round your answer to two decimal places
Hypotenuse = 15
One side =8
Let other side be x
Pythagoras theorem = hyp^= side1 ^2 + side2 ^
15^2= 8^+x^2
15^-8^2= x^2
225-64=x^2
Sqrt 161 =x
Area of right triangle = ½ * side 1* side2
=½ *8*12.69
= 50.76 sq. units
You can put this solution on YOUR website! If the leg = 8 and hypotenuse = 15, then, we use Pythagorean theorem as
where a = 8 and c = 15, we get
or
which is
and then b ~ 12.688 ~ 12.69
You can put this solution on YOUR website! Hello,
This will take a couple steps to solve. First, let's find the length of the base of the triangle with the following formula: A^2+B^2=C^2
"A" will represent one leg of the triangle and "C" will be the diagonal. Plug in the numbers:
8^2+B^2=15^2 Do the calculations:
64+B^2=225Subtract 64 from both sides to get:
B^2=161 Now square root both sides to result in:
B=12.69 (Rounded off)
Now we take the area of a Triangle which is:
Area=1/2Base*height
Plug in the numbers.
A=1/2(12.69)(8) Do the calculations.
A=50.76 square units.
Make sense?
Check out a new book I wrote at:
www.math-unlock.com