SOLUTION: Complete the truth table to show whether the following argument is valid or invalid. If the argument is invalid, you must specify a counter-example.
Premise 1: J → (K→
Algebra ->
Proofs
-> SOLUTION: Complete the truth table to show whether the following argument is valid or invalid. If the argument is invalid, you must specify a counter-example.
Premise 1: J → (K→
Log On
Question 986849: Complete the truth table to show whether the following argument is valid or invalid. If the argument is invalid, you must specify a counter-example.
Premise 1: J → (K→ L)
Premise 2: K → (J → L)
Conclusion: (J v K) → L
J K L J → (K → L) K → (J → L) (J v K) → L
T T T
T T F
T F T
T F F
F T T
F F T
F T F
F F F
J K L K→L J→(K→L) J→L K→(J→L) JvK (JvK)→L
T T T T T T T T T
*T T F F F F F T F
T F T T T T T T T
*T F F T T F T T F
F T T T T T T T T
*F T F F T T T T F
F F T T T T T F T
F F F T T T T F T
Counterexamples marked with *.
John
My calculator said it, I believe it, that settles it