SOLUTION: Complete the truth table to show whether the following argument is valid or invalid. If the argument is invalid, you must specify a counter-example. Premise 1: J → (K→

Algebra ->  Proofs -> SOLUTION: Complete the truth table to show whether the following argument is valid or invalid. If the argument is invalid, you must specify a counter-example. Premise 1: J → (K→      Log On


   



Question 986849: Complete the truth table to show whether the following argument is valid or invalid. If the argument is invalid, you must specify a counter-example.
Premise 1: J → (K→ L)
Premise 2: K → (J → L)
Conclusion: (J v K) → L

J K L J → (K → L) K → (J → L) (J v K) → L
T T T
T T F
T F T
T F F
F T T
F F T
F T F
F F F

Answer by solver91311(24713) About Me  (Show Source):
You can put this solution on YOUR website!


 J   K   L   K→L   J→(K→L)   J→L   K→(J→L)  JvK  (JvK)→L
 T   T   T    T      T        T      T       T      T
*T   T   F    F      F        F      F       T      F
 T   F   T    T      T        T      T       T      T
*T   F   F    T      T        F      T       T      F
 F   T   T    T      T        T      T       T      T
*F   T   F    F      T        T      T       T      F
 F   F   T    T      T        T      T       F      T
 F   F   F    T      T        T      T       F      T

Counterexamples marked with *.

John

My calculator said it, I believe it, that settles it