SOLUTION: Premise: 1. (L ≡ N) ⊃ C 2. (L ≡ N) ∨ (P ⊃ ~E) 3. ~E ⊃ C 4. ~C Conclusion: ~P I need the proof but im struggling
Algebra
->
Proofs
-> SOLUTION: Premise: 1. (L ≡ N) ⊃ C 2. (L ≡ N) ∨ (P ⊃ ~E) 3. ~E ⊃ C 4. ~C Conclusion: ~P I need the proof but im struggling
Log On
Logic: Proofs
Logic
Solvers
Solvers
Lessons
Lessons
Answers archive
Answers
Click here to see ALL problems on Proofs
Question 1208773
:
Premise:
1.
(L ≡ N) ⊃ C
2.
(L ≡ N) ∨ (P ⊃ ~E)
3.
~E ⊃ C
4.
~C
Conclusion:
~P
I need the proof but im struggling
Answer by
math_tutor2020(3816)
(
Show Source
):
You can
put this solution on YOUR website!
Premise: 1. (L ≡ N) ⊃ C 2. (L ≡ N) ∨ (P ⊃ ~E) 3. ~E ⊃ C 4. ~C Conclusion: ~P
Here is one way to do the derivation. There may be other approaches.
Number
Statement
Line(s) Used
Reason
1
(L ≡ N) ⊃ C
2
(L ≡ N) v (P ⊃ ~E)
3
~E ⊃ C
4
~C
:.
~P
5
~(L ≡ N)
1,4
Modus Tollens
6
P ⊃ ~E
2,5
Disjunctive Syllogism
7
~(~E)
3,4
Modus Tollens
8
E
7
Double Negation
9
~P
6,8
Modus Tollens
Here's a list of
rules of inference and replacement