SOLUTION: Prove this 1. F∨~I 2. I∨H 3. ~(G↔J)→~H ∴ [(~G∨~J)∙(G∨J)]→F
Algebra
->
Proofs
-> SOLUTION: Prove this 1. F∨~I 2. I∨H 3. ~(G↔J)→~H ∴ [(~G∨~J)∙(G∨J)]→F
Log On
Logic: Proofs
Logic
Solvers
Solvers
Lessons
Lessons
Answers archive
Answers
Click here to see ALL problems on Proofs
Question 1208642
:
Prove this
1. F∨~I
2. I∨H
3. ~(G↔J)→~H ∴ [(~G∨~J)∙(G∨J)]→F
Answer by
math_tutor2020(3817)
(
Show Source
):
You can
put this solution on YOUR website!
Here is one way to do the derivation. There may be other approaches.
Number
Statement
Line(s) Used
Reason
1
F v ~I
2
I v H
3
~(G <--> J) --> ~H
:.
[ (~G v ~J) & (G v J) ] --> F
4
~F --> ~I
1
Material Implication
5
~I --> H
2
Material Implication
6
~F --> H
4,5
Hypothetical Syllogism
7
~H --> F
6
Transposition
8
~(G <--> J) --> F
3,7
Hypothetical Syllogism
9
[ (~G v ~J) & (G v J) ] --> F
8
Material Equivalence
Here's a list of
rules of inference and replacement