SOLUTION: Formal proof: In the text box below, use the proof method (M9) to construct a formal proof to demonstrate that the following argument is valid: (H v K) ⊃ (L v K), M ⊃ [H⊃

Algebra ->  Proofs -> SOLUTION: Formal proof: In the text box below, use the proof method (M9) to construct a formal proof to demonstrate that the following argument is valid: (H v K) ⊃ (L v K), M ⊃ [H⊃      Log On


   



Question 1188424: Formal proof: In the text box below, use the proof method (M9) to construct a formal proof to demonstrate that the following argument is valid:
(H v K) ⊃ (L v K), M ⊃ [H⊃ (N • ~L)] /.: (M • H) ⊃ (N • K)

Answer by math_helper(2461) About Me  (Show Source):
You can put this solution on YOUR website!

1. (H v K) ⊃ (L v K) Premise
2. M ⊃ [H⊃ (N • ~L)] Premise
// Show (M • H) ⊃ (N • K)
3.:: M • H Conditional Proof (CP) assumption #1
4.:: M 3, Simplification (SIMP)
5.:: H⊃ (N • ~L) 4,2 Modus Ponens (MP)
6.:: H 3, SIMP
7.:: N • ~L 6,5 MP
8.:: N 7, SIMP
9.:: ~(H v K) v (L v K) 1, Material Implication (MI)
10.:: (~H • ~K) v (L v K) 10, DeMorgan's (DM)
11.:: ~L 7, SIMP
12.:: H v K 6, Addition (ADD)
13.:: L v K 12,1 MP
14.:: K 11,13 Disjunctive Syllogism (DS)
15.:: N • K 8,14 Conjunction (CONJ)
16. (M • H) ⊃ (N • K) 3-15, CP