SOLUTION: Prove ¬F =⇒ G, F =⇒ H ∴ G ∨ H

Algebra ->  Proofs -> SOLUTION: Prove ¬F =⇒ G, F =⇒ H ∴ G ∨ H      Log On


   



Question 1169463: Prove ¬F =⇒ G, F =⇒ H ∴ G ∨ H
Answer by math_helper(2461) About Me  (Show Source):
You can put this solution on YOUR website!

1. ~F --> G
2. F --> H
3.:: ~F Conditional Proof (CP) assumption #1
4.:: G 3,1 Modus Ponens (MP)
5.:: F CP, assumption #2
6.:: H 5,2 MP
7.:: G v H 3-4 and 5-6, Proof by Cases (PBC)
8. G v H 3-7 CP
In words: if we assume ~F, G must be true. If we assume F, then H must be true. Since F v ~F must be true, G v H must be true.