1. ~S → (F → L),
2. F → (L → P), therefore, ~S → (F → P)
| 3. ~[~S → (F → P)] Assumption for Indirect Proof
| 4. ~[~S → (~F v P)] 3, Material Implication
| 5. ~[~~S v (~F v P)] 4, Material Implication
| 6. ~{S v (~F v P)] 5, Double Negation
| 7. ~S & ~(~F v P) 6, DeMorgan's Law
| 8. ~S & (~~F & ~P) 7, DeMorgan's Law
| 9. ~S & (F & ~P) 8, Double Negation
|10. ~S 9, Simplification
|11. F → L 1,10, Modus Ponens
|12. (F & ~P) & ~S 9. Commutation
|13. F & (~P & ~S) 12, Association
|14. F 13, Simplification
|15. L → P 2,14 Modus Ponens
|16. L 11,14 Modus Ponens
|17. P 15,16 Modus Ponens
|18. (F & ~P) & ~S 9, Commutation
|19. (~P & F) & ~S 18, Commutation
|20. ~P & (F & ~S) 19, Asociation
|21. ~P 20, Simplification
|22. P & ~P 17,21 Conjunction
23. ~S → (F → P) Lines 3-22 Indirect Proof
Edwin