SOLUTION: Construct a formal proof of validity for the following argument ~B v [(C⊃D) · (E⊃D)] B · (C v E) Therefore, D

Algebra ->  Proofs -> SOLUTION: Construct a formal proof of validity for the following argument ~B v [(C⊃D) · (E⊃D)] B · (C v E) Therefore, D      Log On


   



Question 1144033: Construct a formal proof of validity for the following argument
~B v [(C⊃D) · (E⊃D)]
B · (C v E)
Therefore, D

Answer by math_helper(2461) About Me  (Show Source):
You can put this solution on YOUR website!
Construct a formal proof of validity for the following argument
~B v [(C⊃D) · (E⊃D)]
B · (C v E)
Therefore, D

-------------------
NOTE: Using
& for "AND"
v for "OR"
--> for "implies"
-------------------
1. ~B v ((C-->D) & (E-->D)) Premise
2. B & (C v E) Premise
3. B 2 Simplification (SIMP)
4. ((C-->D) & (E-->D)) 3,1 Conditional Disjunction (CD)
5. C v E 2 SIMP
6. :: C Conditional Proof (CP) assumption #1
7. :: D 6,4 Modus Ponens (MP)
8. :: E CP assumption #2
9. :: D 8,4 MP
10.:: (C V E) --> D 6-9 Proof by Cases (PBC)
11. D 5,6-10 CP